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Praise	for	Effective	SQL

“Given	the	reputation	of	the	authors,	I	expected	to	be	impressed.	Impressed	doesn’t	cover
it,	though.	I	was	blown	away!	Most	SQL	books	tell	you	‘how.’	This	one	tells	you	‘why.’
Most	SQL	books	separate	database	design	from	implementation.	This	one	integrates	design
considerations	into	every	facet	of	SQL	use.	Most	SQL	books	sit	on	my	shelf.	This	one	will
live	on	my	desk.”

—Roger	Carlson,	Microsoft	Access	MVP	(2006–2015)

“It	can	be	easy	to	learn	the	basics	of	SQL,	but	it	is	very	difficult	to	build	accurate	and
efficient	SQL,	especially	for	critical	systems	with	complex	requirements.	But	now,	with	this
great	new	book,	you	can	get	up	to	speed	and	write	effective	SQL	much	more	quickly,	no
matter	which	DBMS	you	use.”

—Craig	S.	Mullins,	Mullins	Consulting,	Inc.,	DB2	Gold	Consultant	and	IBM	Champion
for	Analytics

“This	is	a	great	book.	It	is	written	in	language	that	can	be	understood	by	a	relative	beginner
and	yet	contains	tips	and	tricks	that	will	benefit	the	most	hardened	workhorse.	It	will
therefore	appeal	to	readers	across	the	whole	range	of	expertise	and	should	be	in	the	library
of	anybody	who	is	seriously	concerned	with	designing,	managing,	or	programming
databases.”

—Graham	Mandeno,	database	consultant	and	Microsoft	MVP	(1996–2015)

“This	book	is	an	excellent	resource	for	database	designers	and	developers	working	with
relational	and	SQL-based	databases—it’s	an	easy	read	with	great	examples	that	combine
theory	with	practical	examples	seamlessly.	Examples	for	top	relational	databases	Oracle,
DB2,	SQL	Server,	MySQL,	and	PostgreSQL	are	included	throughout.	The	book	walks	the
reader	through	sophisticated	techniques	to	deal	with	things	such	as	hierarchical	data	and
tally	tables,	along	with	explanations	of	the	inner	workings	and	performance	implications	of
SQL	using	GROUP	BY,	EXISTS,	IN,	correlated	and	non-correlated	subqueries,	window
functions,	and	joins.	The	tips	you	won’t	find	anywhere	else,	and	the	fun	examples	help	to
make	this	book	stand	out	from	the	crowd.”

—Tim	Quinlan,	database	architect	and	Oracle	Certified	DBA

“This	book	is	good	for	those	who	need	to	support	multiple	dialects	of	SQL.	It’s	divided	up
into	stand-alone	items	that	you	just	grab	and	go.	I	have	been	doing	SQL	in	various	flavors
since	1992	and	even	I	picked	up	a	few	things.”

—Tom	Moreau,	Ph.D.,	SQL	Server	MVP	(2001–2012)

“This	book	is	a	powerful,	compact,	and	easily	understandable	presentation	of	how	to	use
SQL—it	shows	the	application	of	SQL	to	real-world	questions	in	order	to	teach	the
construction	of	queries,	and	it	explains	the	relationship	of	‘how	data	is	stored’	to	‘how	data
is	queried’	so	that	you	obtain	results	successfully	and	effectively.”



—Kenneth	D.	Snell,	Ph.D.,	database	consultant	and	former	Microsoft	Access	MVP

“It	has	been	problematic	for	many	that	there	is	no	book	on	going	from	a	novice	database
administrator	to	a	much	more	advanced	status	until	now.	Effective	SQL	is	a	road	map,	a
guide,	a	Rosetta	Stone,	and	a	coach	on	moving	from	basic	Structured	Query	Language
(SQL)	to	much	more	advanced	uses	to	solve	real-world	problems.	Rather	than	stumble
around	reinventing	the	wheel	or	catching	glimpses	of	the	proper	ways	to	use	a	database,	do
yourself	a	favor	and	buy	a	copy	of	this	book.	Not	only	will	you	see	many	different
approaches	it	would	take	years	to	see	as	a	database	consultant,	but	you	will	get	a	detailed
understanding	of	why	the	databases	of	many	vendors	do	what	they	do.	Save	time,	effort,	and
wear	and	tear	on	your	walls	from	banging	your	head	against	them	and	get	this	book.”

—Dave	Stokes,	MySQL	Community	Manager,	Oracle	Corporation

“Effective	SQL	is	a	‘must	have’	for	any	serious	database	developer.	It	shows	how	powerful
SQL	can	be	in	solving	real-world	problems	in	a	step-by-step	manner.	The	authors	use	easy-
to-understand	language	in	pointing	out	every	advantage	and	disadvantage	of	each	solution
presented	in	the	book.	As	we	all	know,	there	are	multiple	ways	of	accomplishing	the	same
thing	in	SQL,	but	the	authors	explain	why	a	particular	query	is	more	efficient	than	others.
The	part	I	liked	best	about	the	book	is	the	summary	at	the	end	of	each	section,	which
reemphasizes	the	take-away	points	and	reminds	the	reader	which	pitfalls	to	avoid.	I	highly
recommend	this	book	to	all	my	fellow	database	developers.”

—Leo	(theDBguy™),	UtterAccess	Moderator	and	Microsoft	Access	MVP

“I	think	this	is	the	book	that	is	relevant	not	only	for	developers,	but	also	for	DBAs,	as	it
talks	about	writing	efficient	SQL	and	various	ways	of	achieving	a	desired	result.	In	my
opinion,	this	is	a	must-have	book.	Another	reason	to	have	this	book	is	that	it	covers	most	of
the	commonly	used	RDBMSs,	and	so	if	someone	is	looking	to	transition	from	one	RDBMS
to	another,	this	is	the	book	to	pick	up.	The	authors	have	done	a	fantastic	job.	My	heartiest
congratulations	to	them.”

—Vivek	Sharma,	technologist,	Hybrid	Cloud	Solutions,	Core	Technology	and	Cloud,
Oracle	Asia	Pacific
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Foreword

In	the	30	years	since	the	database	language	SQL	was	initially	adopted	as	an	international
standard,	the	SQL	language	has	been	implemented	in	a	multitude	of	database	products.	Today,
SQL	is	everywhere.	It	is	in	high-performance	transaction-processing	systems,	in	smartphone
applications,	and	behind	Web	interfaces.	There	is	even	a	whole	category	of	databases	called
NoSQL	whose	common	feature	is	(or	was)	that	they	don’t	use	SQL.	As	the	NoSQL	databases
have	added	SQL	interfaces,	“No”	is	now	interpreted	as	“Not	Only”	SQL.
Because	of	SQL’s	prevalence,	you	are	likely	to	encounter	SQL	in	multiple	products	and
environments.	One	of	the	(perhaps	valid)	criticisms	of	SQL	is	that	while	it	is	similar	across
products,	there	are	subtle	differences.	These	differences	result	from	different	interpretations	of
the	standard,	different	development	styles,	or	different	underlying	architectures.	To	understand
these	differences,	it	is	helpful	to	have	examples	that	compare	and	contrast	the	subtle	differences
in	SQL	dialects.	Effective	SQL	provides	a	Rosetta	Stone	for	SQL	queries,	showing	how	queries
can	be	written	in	different	dialects	and	explaining	the	differences.
I	often	claim	that	the	best	way	to	learn	something	is	by	making	mistakes.	The	corollary	to	this
claim	is	that	the	people	who	know	the	most	have	made	the	most	mistakes	and	have	learned	from
others’	mistakes.	This	book	includes	examples	of	incomplete	and	incorrect	SQL	queries	with
explanations	of	why	they	are	incomplete	and	incorrect.	This	allows	you	to	learn	from	mistakes
others	have	made.
SQL	is	a	powerful	and	complex	database	language.	As	a	database	consultant	and	a	participant	in
both	the	U.S.	and	international	SQL	Standards	committees,	I’ve	seen	a	lot	of	queries	that	did	not
take	advantage	of	SQL’s	capabilities.	Application	developers	who	fully	learn	SQL’s	power	and
complexities	can	take	full	advantage	of	SQL’s	capabilities	not	only	to	build	applications	that
perform	well,	but	also	to	build	those	applications	efficiently.	The	61	specific	examples	in
Effective	SQL	assist	in	this	learning.

—Keith	W.	Hare
Senior	Consultant,	JCC	Consulting,	Inc.;	Vice	Chair,	INCITS	DM32.2—the	U.S.	SQL

Standards	Committee;
Convenor,	ISO/IEC	JTC1	SC32	WG3—the	International	SQL	Standards	Committee
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Introduction

Structured	Query	Language,	or	SQL,	is	the	standard	language	for	communicating	with	most
database	systems.	We	assume	that	because	you	are	looking	at	this	book,	you	have	a	need	to	get
information	from	a	database	system	that	uses	SQL.
This	book	is	targeted	at	the	application	developers	and	junior	database	administrators	(DBAs)
who	regularly	work	with	SQL	as	part	of	their	jobs.	We	assume	that	you	are	already	familiar	with
the	basic	SQL	syntax	and	focus	on	providing	useful	tips	to	get	the	most	out	of	the	SQL	language.
We	have	found	that	the	mindset	required	is	quite	different	from	what	works	for	computer
programming	as	we	move	away	from	a	procedural-based	approach	to	solving	problems	toward	a
set-based	approach.
A	relational	database	management	system	(RDBMS)	is	a	software	application	program	you	use	to
create,	maintain,	modify,	and	manipulate	a	relational	database.	Many	RDBMS	programs	also
provide	the	tools	you	need	to	create	end-user	applications	that	interact	with	the	data	stored	in	the
database.	RDBMS	programs	have	continually	evolved	since	their	first	appearance,	and	they	are
becoming	more	full-featured	and	powerful	as	advances	occur	in	hardware	technology	and
operating	environments.

A	Brief	History	of	SQL
Dr.	Edgar	F.	Codd	(1923–2003),	an	IBM	research	scientist,	first	conceived	the	relational
database	model	in	1969.	He	was	looking	into	new	ways	to	handle	large	amounts	of	data	in	the
late	1960s	and	began	thinking	of	how	to	apply	mathematical	principles	to	solve	the	myriad
problems	he	had	been	encountering.
After	Dr.	Codd	presented	the	relational	database	model	to	the	world	in	1970,	organizations	such
as	universities	and	research	laboratories	began	efforts	to	develop	a	language	that	could	be	used
as	the	foundation	of	a	database	system	that	supported	the	relational	model.	Initial	work	led	to	the
development	of	several	different	languages	in	the	early	to	mid-1970s.	One	such	effort	occurred	at
IBM’s	Santa	Teresa	Research	Laboratory	in	San	Jose,	California.
IBM	began	a	major	research	project	in	the	early	1970s	called	System/R,	intending	to	prove	the
viability	of	the	relational	model	and	to	gain	some	experience	in	designing	and	implementing	a
relational	database.	Their	initial	endeavors	between	1974	and	1975	proved	successful,	and	they
managed	to	produce	a	minimal	prototype	of	a	relational	database.
At	the	same	time	they	were	working	on	developing	a	relational	database,	researchers	were	also
working	to	define	a	database	language.	In	1974,	Dr.	Donald	Chamberlin	and	his	colleagues
developed	Structured	English	Query	Language	(SEQUEL),	which	allowed	users	to	query	a
relational	database	using	clearly	defined	English-style	sentences.	The	initial	success	of	their
prototype	database,	SEQUEL-XRM,	encouraged	Dr.	Chamberlin	and	his	staff	to	continue	their
research.	They	revised	SEQUEL	into	SEQUEL/2	between	1976	and	1977,	but	they	had	to	change
the	name	SEQUEL	to	SQL	(Structured	Query	Language	or	SQL	Query	Language)	for	legal	reasons
—someone	else	had	already	used	the	acronym	SEQUEL.	To	this	day,	many	people	still	pronounce
SQL	as	“sequel,”	although	the	widely	accepted	“official”	pronunciation	is	“ess-cue-el.”



Although	IBM’s	System/R	and	SQL	proved	that	relational	databases	were	feasible,	hardware
technology	at	the	time	was	not	sufficiently	powerful	to	make	the	product	appealing	to	businesses.
In	1977	a	group	of	engineers	in	Menlo	Park,	California,	formed	Relational	Software,	Inc.,	for	the
purpose	of	building	a	new	relational	database	product	based	on	SQL	that	they	called	Oracle.
Relational	Software	shipped	its	product	in	1979,	providing	the	first	commercially	available
RDBMS.	One	of	Oracle’s	advantages	was	that	it	ran	on	Digital’s	VAX	minicomputers	instead	of
the	more	expensive	IBM	mainframes.	Relational	Software	has	since	been	renamed	Oracle
Corporation	and	is	one	of	the	leading	vendors	of	RDBMS	software.
At	roughly	the	same	time,	Michael	Stonebraker,	Eugene	Wong,	and	several	other	professors	at	the
University	of	California’s	Berkeley	computer	laboratories	were	also	researching	relational
database	technology.	They	developed	a	prototype	relational	database	that	they	named	Ingres.
Ingres	included	a	database	language	called	Query	Language	(QUEL),	which	was	much	more
structured	than	SQL	but	made	less	use	of	English-like	statements.	However,	it	became	clear	that
SQL	was	emerging	as	the	standard	database	language,	so	Ingres	was	eventually	converted	to	an
SQL-based	RDBMS.	Several	professors	left	Berkeley	in	1980	to	form	Relational	Technology,
Inc.,	and	in	1981	they	announced	the	first	commercial	version	of	Ingres.	Relational	Technology
has	gone	through	several	transformations.	Formerly	owned	by	Computer	Associates	International,
Inc.,	and	now	part	of	Actian,	Ingres	is	still	one	of	the	leading	database	products	in	the	industry
today.
Meanwhile,	IBM	announced	its	own	RDBMS	called	SQL/Data	System	(SQL/DS)	in	1981	and
began	shipping	it	in	1982.	In	1983,	the	company	introduced	a	new	RDBMS	product	called
Database	2	(DB2),	which	could	be	used	on	IBM	mainframes	using	IBM’s	mainstream	MVS
operating	system.	First	shipped	in	1985,	DB2	has	become	IBM’s	premier	RDBMS,	and	its
technology	has	been	incorporated	into	the	entire	IBM	product	line.
With	the	flurry	of	activity	surrounding	the	development	of	database	languages,	the	idea	of
standardization	was	tossed	about	within	the	database	community.	However,	no	consensus	or
agreement	as	to	who	should	set	the	standard	or	which	dialect	it	should	be	based	upon	was	ever
reached,	so	each	vendor	continued	to	develop	and	improve	its	own	database	product	in	the	hope
that	it—and,	by	extension,	its	dialect	of	SQL—would	become	the	industry	standard.
Customer	feedback	and	demand	drove	many	vendors	to	include	certain	elements	in	their	SQL
dialects,	and	in	time	an	unofficial	standard	emerged.	It	was	a	small	specification	by	today’s
standards,	as	it	encompassed	only	those	elements	that	were	similar	across	the	various	SQL
dialects.	However,	this	specification	(such	as	it	was)	did	provide	database	customers	with	a	core
set	of	criteria	by	which	to	judge	the	various	database	programs	on	the	market,	and	it	also	gave
users	knowledge	that	they	could	leverage	from	one	database	program	to	another.
In	1982,	the	American	National	Standards	Institute	(ANSI)	responded	to	the	growing	need	for	an
official	relational	database	language	standard	by	commissioning	its	X3	organization’s	database
technical	committee,	X3H2,	to	develop	a	proposal	for	such	a	standard.	After	much	effort	(which
included	many	improvements	to	SQL),	the	committee	realized	that	its	new	standard	had	become
incompatible	with	existing	major	SQL	dialects,	and	the	changes	made	to	SQL	did	not	improve	it
significantly	enough	to	warrant	the	incompatibilities.	As	a	result,	they	reverted	to	what	was	really
just	a	minimal	set	of	“least	common	denominator”	requirements	to	which	database	vendors	could
conform.



ANSI	ratified	this	standard,	“ANSI	X3.135-1986	Database	Language	SQL,”	which	became
commonly	known	as	SQL/86,	in	1986.	In	essence,	it	conferred	official	status	on	the	elements	that
were	similar	among	the	various	SQL	dialects	and	that	many	database	vendors	had	already
implemented.	Although	the	committee	was	aware	of	its	shortcomings,	at	least	the	new	standard
provided	a	specific	foundation	from	which	the	language	and	its	implementations	could	be
developed	further.
The	International	Organization	for	Standardization	(ISO)	approved	its	own	document	(which
corresponded	exactly	with	ANSI	SQL/86)	as	an	international	standard	in	1987	and	published	it	as
“ISO	9075:1987	Database	Language	SQL.”	(Both	standards	are	still	often	referred	to	as	just
SQL/86.)	The	international	database	vendor	community	could	now	work	from	the	same	standards
as	vendors	in	the	United	States.	Despite	the	fact	that	SQL	gained	the	status	of	an	official	standard,
the	language	was	far	from	being	complete.
SQL/86	was	soon	criticized	in	public	reviews,	by	the	government,	and	by	industry	pundits	such	as
C.	J.	Date	for	problems	such	as	redundancy	within	the	SQL	syntax	(there	were	several	ways	to
define	the	same	query),	lack	of	support	for	certain	relational	operators,	and	lack	of	referential
integrity.
Both	ISO	and	ANSI	adopted	refined	versions	of	their	standards	in	an	attempt	to	address	the
criticisms,	especially	with	respect	to	referential	integrity.	ISO	published	“ISO	9075:	1989
Database	Language	SQL	with	Integrity	Enhancement”	in	mid-1989,	and	ANSI	adopted	its
“X3.135-1989	Database	Language	SQL	with	Integrity	Enhancement,”	also	often	referred	to	as
SQL/89,	late	that	same	year.
It	was	generally	recognized	that	SQL/86	and	SQL/89	lacked	some	of	the	most	fundamental
features	needed	for	a	successful	database	system.	For	example,	neither	standard	specified	how	to
make	changes	to	the	database	structure	once	it	was	defined.	It	was	not	possible	to	modify	or
delete	any	structural	component,	or	to	make	changes	to	the	security	of	the	database,	despite	the
fact	that	all	vendors	provided	ways	to	do	this	in	their	commercial	products.	(For	example,	you
could	CREATE	a	database	object,	but	no	ALTER	or	DROP	syntax	was	defined.)
Not	wanting	to	provide	yet	another	“least	common	denominator”	standard,	both	ANSI	and	ISO
continued	working	on	major	revisions	to	SQL	that	would	make	it	a	complete	and	robust	language.
The	new	version	(SQL/92)	would	include	features	that	most	major	database	vendors	had	already
widely	implemented,	but	it	also	included	features	that	had	not	yet	gained	wide	acceptance,	as
well	as	new	features	that	were	substantially	beyond	those	currently	implemented.
ANSI	and	ISO	published	their	new	SQL	Standards—“X3.135-1992	Database	Language	SQL”
and	“ISO/IEC	9075:1992	Database	Language	SQL,”	respectively—in	October	1992.	The	SQL/92
document	is	considerably	larger	than	the	one	for	SQL/89,	but	it	is	also	much	broader	in	scope.
For	example,	it	provides	the	means	to	modify	the	database	structure	after	it	has	been	defined,
supports	additional	operations	for	manipulating	character	strings	as	well	as	dates	and	times,	and
defines	additional	security	features.	SQL/92	was	a	major	step	forward	from	any	of	its
predecessors.
While	database	vendors	worked	on	implementing	the	features	in	SQL/92,	they	also	developed
and	implemented	features	of	their	own,	making	additions	to	the	SQL	Standard	known	as
“extensions.”	While	the	extensions	(such	as	providing	more	data	types	than	the	six	specified	in



SQL/92)	provided	more	functionality	within	a	given	product	and	allowed	vendors	to	differentiate
themselves	from	one	another,	there	were	drawbacks.	The	main	problem	with	adding	extensions	is
that	it	causes	each	vendor’s	dialect	of	SQL	to	diverge	further	from	the	original	standard,	which
prevents	database	developers	from	creating	portable	applications	that	can	be	run	from	any	SQL
database.
In	1997,	ANSI’s	X3	organization	was	renamed	the	National	Committee	for	Information
Technology	Standards	(NCITS),	and	the	technical	committee	in	charge	of	the	SQL	Standard	is
now	called	ANSI	NCITS-H2.	Because	of	the	rapidly	growing	complexity	of	the	SQL	Standard,
the	ANSI	and	ISO	standards	committees	agreed	to	break	the	standard	into	12	separate	numbered
parts	and	one	addendum	as	they	began	to	work	on	SQL3	(so	named	because	it	is	the	third	major
revision	of	the	standard)	so	that	work	on	each	part	could	proceed	in	parallel.	Since	1997,	two
additional	parts	have	been	defined.
Everything	you	read	in	this	book	is	based	on	the	current	ISO	Standard	for	the	SQL	database
language—SQL/Foundation	(document	ISO/IEC	9075-2:2011)—as	currently	implemented	in
most	of	the	popular	commercial	database	systems.	ANSI	also	adopted	the	ISO	document,	so	this
is	truly	an	international	standard.	We	also	used	the	documentation	from	the	latest	versions	of	IBM
DB2,	Microsoft	Access,	Microsoft	SQL	Server,	MySQL,	Oracle,	and	PostgreSQL	to	provide,
where	necessary,	syntax	specific	to	each	product.	Although	most	of	the	SQL	you	will	learn	here	is
not	specific	to	any	particular	software	product,	we	do	show	you	product-specific	examples	where
appropriate.

Database	Systems	We	Considered
Although	you	saw	in	the	previous	section	that	there	are	standards	for	SQL,	that	is	not	to	say	that
all	DBMSs	are	the	same.	The	Web	site	DB-Engines	collects	and	presents	information	on	DBMSs
and	provides	a	monthly	listing	of	them,	ranked	by	their	current	popularity,	at	http://db-
engines.com/en/ranking/relational+dbms.
For	many	months	now,	their	rankings	have	presented	six	DBMSs	as	consistently	the	most	popular,
listed	in	alphabetical	order	here	(the	versions	that	we	used	for	our	testing	are	in	parentheses):

1.	IBM	DB2	(DB2	for	Linux,	UNIX,	and	Windows	v10.5.700.368)
2.	Microsoft	Access	(Microsoft	Access	2007—also	compatible	with	versions	2010,	2013,
2016,	and	later)

3.	Microsoft	SQL	Server	(Microsoft	SQL	Server	2012—11.0.5343.0)
4.	MySQL	(MySQL	Community	Server	5.7.11)
5.	Oracle	Database	(Oracle	Database	11g	Express	Edition	Release	11.2.0.2.0)
6.	PostgreSQL	(PostgreSQL	9.5.2)

That	does	not	mean	that	the	material	presented	in	this	book	will	not	work	on	a	DBMS	not	in	that
list	of	six.	It	simply	means	that	we	have	not	tested	the	material	on	other	DBMSs	or	for	different
versions	of	the	DBMSs	listed.	As	you	read	this	book,	you	will	see	that	we	have	included	advice
(as	Notes)	when	it	is	necessary	to	make	changes.	Those	Notes	apply	only	to	the	six	DBMSs	listed
here.	If	you	are	using	a	different	DBMS,	check	your	documentation	for	compliance	if	you	run	into
issues	with	any	of	our	samples.

http://db-engines.com/en/ranking/relational+dbms


Sample	Databases
To	illustrate	the	concepts	presented	in	this	book,	we	use	a	number	of	sample	databases,	including
the	following:

1.	Beer	Styles:	This	is	a	fun	attempt	to	catalog	the	details	of	89	different	styles	of	beer,	based
on	the	information	presented	by	Michael	Larson	in	his	book	Beer:	What	to	Drink	Next
(Sterling	Epicure,	2014).

2.	Entertainment	Agency:	This	database	is	designed	to	manage	entertainers,	agents,
customers,	and	bookings.	You	would	use	a	similar	design	to	handle	event	bookings	or	hotel
reservations.

3.	Recipes:	You	can	use	this	database	to	save	and	manage	all	your	favorite	recipes,	as	well
as	some	of	our	favorites.

4.	Sales	Orders:	This	is	a	typical	order-entry	database	for	a	store	that	sells	bicycles,
skateboards,	and	accessories.

5.	Student	Grades:	This	database	lists	students,	the	courses	in	which	they	are	enrolled,	and
their	performance	in	those	courses.

We	also	provide	a	number	of	sample	databases	specific	to	a	particular	item,	some	of	which	are
built	by	a	code	listing	within	the	item.	The	schemas	and	sample	data	are	available	in	the	GitHub
site	associated	with	the	book.

Where	to	Find	the	Samples	on	GitHub
Many	technical	books	come	with	a	CD-ROM	containing	the	examples	in	electronic	form.	That	can
be	limiting,	so	we	decided	to	provide	our	examples	in	GitHub,	at
https://github.com/TexanInParis/Effective-SQL.
There,	you	will	find	high-level	folders	for	each	of	the	six	DBMSs	we	considered.	Within	each	of
those	high-level	folders	are	ten	folders	corresponding	to	the	ten	chapters	in	the	book,	plus	a
folder	for	the	sample	databases.
Within	each	of	the	ten	chapter	folders,	there	are	individual	files,	named	to	correspond	to	the
listing	numbers	within	each	chapter.	Note	that	not	all	listings	are	applicable	to	every	DBMS.
When	that	is	the	case,	we	highlight	differences	in	the	README	files	for	each	chapter.	For
Microsoft	Access,	the	README	file	indicates	which	sample	database	contains	the	listings	for	the
chapter.
The	root	folder	on	GitHub	also	contains	the	Listings.xlsx	file	that	shows	you	which	database
contains	each	listing.	That	file	also	documents	SQL	samples	that	are	applicable	to	each	of	the	six
database	systems.
Each	of	the	sample	database	folders,	with	the	exception	of	the	Microsoft	Access	folder	that
contains	.accdb	files	in	2007	format,	contains	a	number	of	SQL	files.	We	used	the	2007	format	for
Microsoft	Access	because	it	is	compatible	over	all	versions	of	the	product	since	version	12
(2007).	One	set	of	these	files	creates	the	structure	for	each	sample	database,	and	the	other	set	of
files	contains	the	data	to	populate	the	sample	databases.	(Note	that	some	of	the	items	in	this	book
rely	on	specific	data	cases.	The	structures	and	data	for	those	items	are	sometimes	contained
within	the	chapter	listings.)

https://github.com/TexanInParis/Effective-SQL


Note
In	preparing	the	listings	in	this	book	for	publication,	we	sometimes	had	issues	fitting
within	the	63-character-per-line	limit	imposed	by	the	physical	page.	It	is	possible
that	a	listing	could	have	been	edited	incorrectly.	When	in	doubt,	all	the	listings	on
GitHub	were	tested,	so	we	are	confident	that	they	are	correct.

Summary	of	the	Chapters
As	the	title	of	the	book	suggests,	61	specific	items	are	presented	in	this	book.	Each	item	is
intended	to	stand	by	itself;	you	should	not	need	to	read	other	items	in	order	to	use	the	material
presented	in	a	specific	item.	There	are,	of	course,	times	when	the	material	in	a	specific	item	does
build	on	material	in	other	items.	When	that	is	the	case,	we	have	tried	to	present	as	much
background	material	as	we	felt	was	necessary,	but	we	do	provide	cross-references	to	other
relevant	items	so	that	you	can	review	the	material	yourself.
Although	each	item	is,	as	already	stated,	intended	to	stand	alone,	we	felt	there	were	natural
groupings	of	topics.	The	groupings	we	used	are	these	ten:

1.	Data	Model	Design:	Because	you	cannot	write	effective	SQL	when	you	are	working	with
a	bad	data	model	design,	the	items	in	this	chapter	cover	some	basics	of	good	relational
model	design.	If	your	database	design	violates	any	of	the	rules	discussed	in	this	chapter,	you
need	to	figure	out	what	is	wrong	and	fix	it.

2.	Programmability	and	Index	Design:	Simply	having	a	good	logical	data	model	design	is
not	sufficient	to	allow	you	to	write	effective	SQL.	You	must	ensure	that	you	have
implemented	the	design	in	an	appropriate	manner,	or	you	may	find	that	your	ability	to
extract	meaningful	information	from	the	data	in	an	efficient	manner	using	SQL	will	be
compromised.	The	items	in	this	chapter	help	you	understand	the	importance	of	indexes,	and
how	to	ensure	that	they	have	been	properly	implemented.

3.	When	You	Can’t	Change	the	Design:	Sometimes,	despite	your	best	efforts,	you	are
forced	to	deal	with	external	data	outside	of	your	control.	The	items	in	this	chapter	are
intended	to	help	you	deal	with	such	situations.

4.	Filtering	and	Finding	Data:	The	ability	to	look	for	or	filter	out	the	data	of	interest	is	one
of	the	most	important	tasks	you	can	do	in	SQL.	The	items	in	this	chapter	explore	different
techniques	you	can	use	to	extract	the	exact	information	you	want.

5.	Aggregation:	The	SQL	Standard	has	always	provided	the	ability	to	aggregate	data.
However,	typically	you	are	asked	to	provide	“totals	per	customer,”	“count	of	orders	by
day,”	or	“average	sales	of	each	category	by	month.”	It	is	the	part	after	the	“per,”	“by,”	and
“of	each”	that	requires	additional	attention.	The	items	in	this	chapter	present	techniques	to
get	the	best	performance	out	of	your	aggregation.	Some	of	them	also	show	how	to	use
window	functions	to	provide	even	more	complex	aggregations.

6.	Subqueries:	There	are	many	different	ways	in	which	you	can	use	subqueries.	The	items	in
this	chapter	are	intended	to	show	a	variety	of	ways	to	get	additional	flexibility	in	your	SQL
through	the	use	of	subqueries.

7.	Getting	and	Analyzing	Metadata:	Sometimes	just	data	is	not	enough.	You	need	data



about	data.	You	might	even	need	data	about	how	you	are	getting	the	data.	In	some	cases,	it
might	even	be	convenient	to	get	the	metadata	using	SQL.	The	items	in	this	chapter	tend	to	be
quite	product	specific,	but	our	hope	is	that	we	provide	sufficient	information	so	that	you	can
apply	the	principles	to	your	specific	DBMS.

8.	Cartesian	Products:	Cartesian	Products	are	the	result	of	combining	all	rows	in	one	table
with	all	rows	in	a	second	table.	While	perhaps	not	as	common	as	other	join	types,	the	items
in	this	chapter	show	real-world	situations	where	it	would	not	be	possible	to	answer	the
underlying	question	without	the	use	of	a	Cartesian	Product.

9.	Tally	Tables:	Another	useful	tool	is	the	tally	table,	usually	a	table	with	a	single	column	of
sequential	numbers,	or	a	single	column	of	sequential	dates,	or	something	more	complex	to
aid	in	“pivoting”	a	set	of	summaries.	While	Cartesian	Products	are	dependent	on	actual
values	in	the	underlying	tables,	tally	tables	allow	you	to	cover	all	possibilities.	The	items
in	this	chapter	show	examples	of	various	problems	that	can	be	solved	only	through	the	use
of	a	tally	table.

10.	Modeling	Hierarchical	Data:	It	is	not	uncommon	to	have	to	model	hierarchical	data	in
your	relational	database.	Unfortunately,	it	happens	to	be	one	of	SQL’s	weaker	areas.	The
items	in	this	chapter	are	intended	to	help	you	make	the	trade-off	between	data
normalization,	and	ease	of	querying	and	maintenance	of	metadata.

Each	database	system	has	a	variety	of	functions	that	you	can	use	to	calculate	or	manipulate	date
and	time	values.	Each	database	system	also	has	its	own	rules	regarding	data	types	and	date	and
time	arithmetic.	Because	of	the	differences,	we	also	included	an	Appendix,	“Date	and	Time
Types,	Operations,	and	Functions,”	to	help	you	work	with	date	and	time	values	in	your	database
system.	We	believe	it	accurately	summarizes	the	data	types	and	arithmetic	operations	supported,
but	we	do	recommend	that	you	consult	your	database	documentation	for	the	specific	syntax	to	use
with	each	function.



1.	Data	Model	Design

“You	can’t	make	a	silk	purse	out	of	a	sow’s	ear.”	This	famous	saying,	attributed	to	English	satirist
Stephen	Gosson	in	1579,	certainly	applies	to	databases.	You	cannot	begin	to	write	“effective”
SQL	when	you’re	working	with	a	bad	data	model	design.	When	your	data	model	is	not	properly
normalized	with	correct	relationships	defined,	you	will	find	it	difficult,	if	not	impossible,	to
extract	meaningful	information	from	the	data	using	SQL.	This	chapter	covers	the	basics	of	good
relational	model	design.	If	your	database	design	violates	any	of	the	rules	discussed	here,	you	need
to	figure	out	what	is	wrong	and	fix	it.
If	the	design	is	not	under	your	control,	you	will	at	least	gain	the	understanding	of	why	you	are
having	such	difficulty	so	that	you	can	explain	potential	remedies	to	those	who	do	have	design
control.	You	can	use	the	information	in	this	chapter	to	explain	why	it	will	be	difficult	or
impossible	to	write	the	SQL	that	you	have	been	asked	to	create	to	retrieve	the	information
required.	If	you	can’t	fix	the	design,	there	are	a	few	things	you	can	do	in	SQL	to	get	around	some
of	the	problems.	If	that	is	the	situation	you	face,	read	on	to	Chapter	3,	“When	You	Can’t	Change
the	Design,”	to	gather	additional	insights.
We	do	not	try	to	cover	all	the	nuances	of	database	design,	just	the	basics.	If	you	want	a	deeper
understanding	of	how	to	create	a	design	that	adheres	to	the	relational	model,	get	your	hands	on	a
good	design	book	such	as	Database	Design	for	Mere	Mortals,	Third	Edition,	by	Michael	J.
Hernandez	(Addison-Wesley,	2013).

Item	1:	Verify	That	All	Tables	Have	a	Primary	Key
Because	adherence	to	the	relational	model	requires	that	your	database	system	be	able	to
distinguish	a	single	row	of	a	table	from	all	other	rows,	every	table	should	have	a	column	or	set	of
columns	as	the	primary	key.	The	contents	of	a	primary	key	must	be	unique	for	each	row	and
cannot	be	null.	(Refer	to	Item	10,	“Factor	in	nulls	when	creating	indexes,”	for	more	detail	on
nulls.)	Without	a	primary	key,	it	is	impossible	to	ensure	that	you	will	match	either	exactly	zero
rows	or	one	row	when	filtering.	However,	the	“gotcha”	is	that	it	is	legal	to	create	a	table	without
a	primary	key.	In	fact,	simply	having	a	column	or	set	of	columns	that	are	not	null	and	are	unique
across	the	rows	does	not	mean	that	the	database	engine	will	be	able	to	use	the	column(s)
efficiently.	You	must	explicitly	tell	the	database	engine	about	it	by	defining	a	primary	key	on	one
or	more	columns.	Furthermore,	it	is	not	typically	possible	(or	desirable)	to	model	relationships
between	tables	without	a	primary	key	defined.
When	tables	lack	primary	keys,	all	kinds	of	problems	can	ensue,	including	repeated	and
inconsistent	data,	slow-running	queries,	and	inaccurate	information	in	reports!	Consider	the
example	with	an	Orders	table	shown	in	Figure	1.1.



Figure	1.1	Example	of	inconsistent	data

In	Figure	1.1,	all	the	values	are	certainly	unique	from	a	computer	perspective,	but	it	might	be	the
case	that	they	are	all	the	same	person,	or	at	least	rows	1,	2,	and	4	(variations	on	John	A.	Smith)
are	the	same.	Although	computers	can	process	data	much	faster	than	any	human	brain,	they	are	not
very	good	at	determining	when	certain	data	should	be	considered	the	same	without	a	significant
amount	of	programming.	So	even	though	we	can	define	the	Customer	column	as	a	primary	key
of	the	table,	it	does	not	follow	that	it	is	a	good	choice	even	though	it	has	satisfied	the	uniqueness
requirement.
So,	what	makes	a	good	candidate	for	a	primary	key?	The	column(s)	considered	should	have	the
following	characteristics:

	Must	hold	unique	values
	Can	never	be	null
	Should	be	stable	(i.e.,	there	is	no	need	to	ever	update	the	value)
	Should	be	as	simple	as	possible	(e.g.,	use	an	integer	data	type	rather	than	floating	point	or
character,	and	prefer	a	single	column	over	multiple	columns)

A	common	method	of	achieving	this	goal	is	to	use	an	automatically	generated	meaningless
numeric	data	value	as	a	primary	key.	This	has	various	names,	depending	on	the	relational
database	management	system	(RDBMS)	software	that	you	are	using,	such	as	IDENTITY	in	IBM
DB2,	Microsoft	SQL	Server,	and	Oracle	12c,	AutoNumber	in	Microsoft	Access,
AUTO_INCREMENT	in	MySQL,	and	serial	in	PostgreSQL.	In	prior	versions	of	Oracle,	it	was
necessary	to	use	a	Sequence	object	to	perform	a	similar	service,	but	it	was	a	stand-alone
object	rather	than	a	column	attribute.	DB2,	SQL	Server,	and	PostgreSQL	also	support	Sequence
objects.
Referential	integrity	(RI)	is	a	very	important	concept	in	relational	databases.	Enforced	RI	means
there	must	be	a	matching	record	in	a	parent	table	for	every	record	in	a	child	table	with	a	non-null
foreign	key.
In	a	well-designed	Orders	table,	the	customer	information	would	come	from	a	foreign	key	to	a
separate	Customers	table	using	the	primary	key	of	that	table.	If	there	are	actually	multiple
different	customers	named	John	Smith,	each	customer	row	will	have	its	own	unique	key,	and	it
will	be	easy	to	identify	the	unique	customer	for	each	order.
In	order	to	maintain	RI	between	tables,	any	changes	in	the	value	of	a	primary	key	must	be
cascaded	to	all	related	child	records	in	the	related	table(s).	This	cascading	of	updates	causes
locks	to	be	placed	on	related	tables,	which	can	lead	to	serious	problems	in	high-concurrency



multi-user	databases.	Consider	the	example	shown	in	Figure	1.2,	taken	from	the	Customers
table	of	the	sample	Northwind	database	provided	with	Microsoft	Access	2003.

Figure	1.2	Sample	data	from	the	Customers	table

In	this	example,	we	assume	that	it	is	a	business	rule	that	the	text-based	primary	key,
CustomerID,	is	related	to	the	name	of	the	company.	If	one	of	the	companies	were	to	change	its
name,	the	CustomerID	should	be	updated	to	reflect	the	business	rules	for	determining	the	key
value.	This	would	require	cascading	the	change	to	related	tables.	If	you	use	a	meaningless	key,
you	avoid	the	need	to	change	or	update	its	value,	but	you	can	still	keep	the	text-based	column	to
provide	a	display	value	that	adheres	to	the	business	rule.
A	common	argument	in	favor	of	text-based	primary	keys	is	that	they	prevent	the	entry	of	duplicate
values.	For	example,	if	you	were	to	make	CompanyName	the	primary	key,	you	would	ensure	that
there	could	be	no	duplicate	names.	However,	it	is	just	as	easy	to	create	a	unique	index	on	the
CompanyName	column	in	the	Customers	table	to	ensure	that	there	can	be	no	duplicate	names.
Integrity	is	ensured,	but	you	can	still	use	a	generated	numeric	value	as	the	primary	key.	This
works	especially	well	if	you	also	adopt	the	advice	in	Item	2,	“Eliminate	redundant	storage	of	data
items,”	and	Item	4,	“Store	only	one	property	per	column,”	which	will	help	you	avoid	the	problem
we	highlighted	with	Figure	1.1.	On	the	other	hand,	it	is	true	that	using	text-based	primary	keys
often	results	in	simpler	SQL	statements	by	avoiding	the	joins	required	to	lookup	tables	to	obtain
the	values	associated	with	numeric	keys	(CompanyName,	in	the	example	in	Figure	1.2).
The	choice	of	numeric	versus	text-based	primary	keys	has	been	known	to	cause	great	debate
among	database	professionals.	We	do	not	take	sides	in	this	argument;	the	important	point	is	to	use
a	unique	identifier	in	all	tables	that	can	be	used	as	a	primary	key.
We	also	advise	against	using	compound	primary	keys	because	they	are	less	efficient,	for	two
reasons:

1.	When	you	define	a	primary	key,	most	database	systems	enforce	the	definition	with	a	unique
index.	A	unique	index	on	more	than	one	column	requires	the	database	system	to	do	more
work.

2.	Performing	a	join	on	a	primary	key	is	quite	common,	but	doing	so	on	multiple	columns	in	a
primary	key	is	more	complex	and	slower.

However,	using	a	primary	key	that	contains	multiple	columns	can	make	sense	in	certain	cases.
Consider	a	table	that	links	products	and	vendors	where	the	table	consists	of	a	VendorID	and	a
ProductID	that	point	to	the	primary	keys	in	the	related	tables.	The	table	might	contain	other
columns,	such	as	an	indicator	of	whether	the	vendor	is	the	primary	or	secondary	supplier	for	the



product,	and	the	price	the	vendor	charges	for	the	product.
You	could	create	an	additional	generated	numeric	column	to	act	as	the	artificial	primary	key,	but
you	could	also	use	the	combination	of	the	VendorID	and	ProductID	columns	as	the	primary
key.	You	will	always	link	to	this	table	by	the	individual	columns,	so	it	is	perhaps	more	efficient	to
define	the	compound	primary	key	rather	than	use	an	additional	column	as	the	key.	You	will	want
to	define	the	two	columns	together	as	unique,	so	it	makes	sense	to	avoid	the	additional	column
and	define	both	as	a	compound	primary	key.	Refer	to	Item	8,	“When	3NF	is	not	enough,	normalize
more,”	for	an	in-depth	example	where	a	compound	primary	key	can	be	advantageous.

Things	to	Remember
	All	tables	should	have	a	column	(or	set	of	columns)	designated	as	a	primary	key.
	If	you	are	concerned	about	duplicate	values	in	a	non-key	column,	you	can	define	a	unique
index	on	the	column	to	ensure	integrity.
	Use	as	simple	a	key	as	possible,	with	values	that	do	not	need	to	be	updated.

Item	2:	Eliminate	Redundant	Storage	of	Data	Items
Redundant	storage	of	data	causes	many	problems,	including	inconsistent	data;	insert,	update,	and
delete	anomalies;	and	wasted	disk	space.	Normalization	is	a	process	that	involves	dividing
information	by	subject	to	help	eliminate	problems	associated	with	storing	duplicate	data.	Note
that	by	“redundant”	we	do	not	mean	the	apparent	duplication	of	a	primary	key	value	from	one
table	as	a	foreign	key	in	another	table.	We	are	more	concerned	with	cases	where	users	enter	the
same	piece	of	data	in	more	than	one	place.	Such	redundancy	is	necessary	to	maintain	the
relational	link	between	tables.
Although	we	cannot	go	into	too	much	depth	on	the	topic	of	database	normalization	because	of
space	constraints,	it	is	very	important	that	people	working	with	databases	have	a	thorough
understanding	of	this	subject.	There	are	many	excellent	resources	available	in	books	and	on	the
Web	that	go	into	greater	detail.
One	goal	of	normalization	is	to	minimize	the	need	to	repeat	data,	either	in	the	same	table	or	in
different	tables	throughout	a	database.	A	few	examples	of	the	redundant	storage	of	data	are	shown
in	the	Customer	Sales	database	shown	Figure	1.3	on	the	next	page.



Figure	1.3	Example	of	redundant	storage	of	data	in	a	single	table

An	example	of	inconsistent	data	is	the	address	for	customer	Tom	Frank.	In	the	second	record,	the
numeric	portion	of	his	address	is	7453,	whereas	in	the	sixth	record,	the	numeric	portion	is	7435.
Similar	inconsistencies	in	data	could	be	present	in	any	of	the	columns.
An	insertion	anomaly	is	present	because	you	cannot	enter	information	for	a	given	model	of
automobile	until	you	have	a	sale	that	is	entered	with	a	customer	record.	Also,	the	design	requires
repeating	most	data	when	a	customer	purchases	additional	cars.	This	represents	unnecessary	data
entry	that	is	wasteful	of	disk	space,	memory,	network	resources,	and	even	the	time	spent	by	a	data
entry	clerk.	In	addition,	repeating	data	entry	greatly	increases	the	risk	of	data	entry	errors,	such	as
transposing	numbers	in	an	address	as	shown	in	the	example	in	Figure	1.3.
An	update	anomaly	exists	because	if,	for	example,	a	salesperson	gets	married	and	changes	his	or
her	name,	you	would	need	to	run	an	update	query	to	update	all	occurrences	of	the	person’s	name.
This	can	present	real	challenges	if	you	are	dealing	with	a	large	number	of	records	in	a	database
that	many	people	use	concurrently.	In	addition,	such	an	update	will	be	successful	only	if	all
occurrences	of	the	person’s	name	are	spelled	exactly	the	same	(meaning	no	inconsistent	data)	and
if	more	than	one	person	does	not	share	the	name.
A	deletion	anomaly	exists	because	if	a	row	is	deleted,	you	may	lose	data	you	did	not	intend	to
remove	from	your	database.
The	customer	sales	data	shown	in	Figure	1.3	can	logically	be	divided	into	four	tables:

1.	Customers	table	(name,	address,	etc.)
2.	Employees	table	(salesperson	name,	hire	date,	etc.)
3.	AutomobileModels	table	(model	year,	model,	etc.)
4.	SalesTransactions	table

This	design	allows	you	to	enter	customer,	employee,	and	automobile	model	information	once	into
the	respective	tables.	All	tables	include	a	unique	identifier	that	can	be	set	as	a	primary	key.	The



SalesTransactions	table	uses	foreign	keys	to	store	the	details	of	each	sales	transaction.
See	Figure	1.4.

Figure	1.4	Example	of	splitting	data	into	tables	by	subject

The	astute	reader	may	have	noticed	that	one	duplicate	customer	record	was	eliminated	in	this
process	as	a	result	of	determining	the	correct	address	for	customer	Tom	Frank.
We	can	create	relationships	(sometimes	referred	to	as	foreign	key	constraints)	by	joining	the
primary	key	from	the	three	parent	tables	(Customers,	AutomobileModels,	and
Employees)	to	the	foreign	key	columns	in	the	SalesTransactions	child	table,	as	shown
in	Figure	1.5	on	the	next	page.	We	created	the	example	shown	in	the	figure	using	the	relationships
editor	in	Microsoft	Access.	Each	relational	database	has	a	different	way	of	representing
relationships	between	tables.



Figure	1.5	Four	tables	that	have	been	related	using	primary	keys	joined	to	foreign	key	columns

You	can	easily	re-create	the	original	data,	shown	earlier	in	Figure	1.3,	by	constructing	a	virtual
table	(query)	as	shown	in	Listing	1.1	on	the	next	page	without	the	penalties	imposed	by	storing
redundant	data.	(Construction	of	the	virtual	table	is	a	perfect	use	for	a	CTE,	or	common	table
expression,	as	discussed	in	Item	42,	“If	possible,	use	common	table	expressions	instead	of
subqueries.”)

Listing	1.1	An	SQL	statement	that	returns	the	original	data

Click	here	to	view	code	image

SELECT	st.SalesID,	c.CustFirstName,	c.CustLastName,	c.Address,
		c.City,	c.Phone,	st.PurchaseDate,	m.ModelYear,	m.Model,
		e.SalesPerson
FROM	SalesTransactions	st
		INNER	JOIN	Customers	c
				ON	c.CustomerID	=	st.CustomerID
		INNER	JOIN	Employees	e
				ON	e.EmployeeID	=	st.SalesPersonID
		INNER	JOIN	AutomobileModels	m
				ON	m.ModelID	=	st.ModelID;

Things	to	Remember
	A	goal	of	database	normalization	is	the	elimination	of	redundant	data	and	minimizing
resource	use	when	processing	data.
	By	eliminating	redundant	data,	you	eliminate	insert,	update,	and	delete	anomalies.
	By	eliminating	redundant	data,	you	minimize	the	occurrence	of	inconsistent	data.

References
If	you	want	to	explore	the	correct	ways	to	design	a	relational	database,	here	are	a	couple	of	books
we	recommend;	the	first	one	is	accessible	to	beginners	and	a	good	place	for	the	novice	to	start:

	Hernandez,	Michael	J.	Database	Design	for	Mere	Mortals	(Addison-Wesley,	2013).
ISBN-10:	0-321-88449-3.



	Fleming,	Candace	C.,	and	Barbara	von	Halle.	Handbook	of	Relational	Database	Design
(Addison-Wesley,	1989).	ISBN-10:	0-201-11434-8.

Item	3:	Get	Rid	of	Repeating	Groups
It	is	common	to	see	spreadsheets	that	include	repeating	groups	of	similar	data.	Often	information
workers	simply	import	this	data	into	a	new	database	without	any	consideration	of	database
normalization.	An	example	of	repeating	groups	of	data	is	shown	in	Figure	1.6,	with	a
DrawingNumber	being	associated	with	up	to	five	Predecessors.	The	table	has	a	one-to-
many	relationship	between	drawing	numbers	and	predecessor	values.

Figure	1.6	Repeating	groups	of	data	in	a	single	table

The	example	in	Figure	1.6	shows	a	single	attribute,	Predecessor,	as	a	repeating	group.	We
also	have	a	duplicate	Predecessor	value,	for	ID	=	3,	which	was	not	intended.	Another
example	could	be	columns	named	January,	February,	March	(or	Jan,	Feb,	Mar),	and	so	on.
However,	repeating	groups	are	not	limited	to	single	attributes.	For	example,	if	you	were	to	see
columns	named	Quantity1,	ItemDescription1,	Price1,	Quantity2,
ItemDescription2,	Price2	.	.	.	QuantityN,	ItemDescriptionN,	PriceN,	you
should	recognize	them	as	a	repeating	group	pattern.
Repeating	groups	are	difficult	to	query	and	create	reports	grouped	by	the	attributes.	In	the
example	in	Figure	1.6,	if	you	later	had	a	need	to	add	Predecessor	values	or	reduce	the
number	of	allowed	Predecessors,	the	current	design	would	require	adding	or	removing	table
columns.	You	would	also	need	to	modify	the	design	of	all	queries	(views),	forms,	and	reports	that
depend	on	the	data	in	this	table.	A	useful	mnemonic	to	remember	is:

Columns	are	expensive.
Rows	are	cheap.

A	red	flag	should	be	raised	in	your	mind	if	the	table	design	requires	adding	or	removing	columns
to	accommodate	future	data	requirements	with	similar	data.	A	much	better	design	involves	adding
or	removing	rows	as	needed.	For	this	example,	we	create	a	Predecessors	table	that	uses	the
ID	value	as	a	foreign	key.	For	clarity,	we	also	rename	the	existing	ID	column	DrawingID,	as
shown	in	Figure	1.7.



Figure	1.7	A	normalized	design	that	accommodates	the	one-to-many	relationship

UNION	queries	are	useful	for	dealing	with	repeating	groups.	We	can	use	a	UNION	query	to
“normalize”	our	data	in	a	read-only	view	if	we	do	not	have	the	ability	to	create	a	properly
normalized	design.	We	can	also	use	a	similar	UNION	query	as	the	source	for	an	append	query	to
add	records	to	a	new	Predecessors	table,	as	shown	in	Listing	1.2.

Listing	1.2	A	UNION	query	that	normalizes	the	data

Click	here	to	view	code	image

SELECT	ID	AS	DrawingID,	Predecessor_1	AS	Predecessor
FROM	Assignments	WHERE	Predecessor_1	IS	NOT	NULL
UNION
SELECT	ID	AS	DrawingID,	Predecessor_2	AS	Predecessor
FROM	Assignments	WHERE	Predecessor_2	IS	NOT	NULL
UNION
SELECT	ID	AS	DrawingID,	Predecessor_3	AS	Predecessor
FROM	Assignments	WHERE	Predecessor_3	IS	NOT	NULL
UNION
SELECT	ID	AS	DrawingID,	Predecessor_4	AS	Predecessor
FROM	Assignments	WHERE	Predecessor_4	IS	NOT	NULL
UNION
SELECT	ID	AS	DrawingID,	Predecessor_5	AS	Predecessor
FROM	Assignments	WHERE	Predecessor_5	IS	NOT	NULL
ORDER	BY	DrawingID,	Predecessor;

Note
If	we	had	a	case	where	we	needed	to	bring	all	the	data	together,	including	duplicates
within	a	row,	we	could	add	the	ALL	keyword	after	each	occurrence	of	the	UNION
keyword,	as	in	UNION	ALL.	However,	in	this	case	we	really	do	want	to	eliminate
the	duplicate	Predecessor	that	was	inadvertently	entered	for	ID	3.

A	UNION	query	requires	that	the	columns	be	of	the	same	data	type,	and	in	the	same	order,	for
each	SELECT	statement.	This	means	that	it	is	really	not	necessary	to	include	AS	DrawingID
or	AS	Predecessor	after	the	first	instance:	the	UNION	query	takes	its	column	names	from	the
first	SELECT.
Each	SELECT	statement	can	have	different	predicates	for	its	WHERE	clause.	Depending	on	the
data,	we	may	also	have	to	exclude	zero-length	strings	(ZLSs)	and/or	other	nonprintable	formats,
such	as	a	single	space	('	').
A	UNION	query	can	use	a	single	ORDER	BY	clause	at	the	end.	We	can	specify	the	ordinal



references,	as	in	ORDER	BY	1,	2.	This	would	be	the	same	as	ORDER	BY	DrawingID,
Predecessor	in	Listing	1.2.

Things	to	Remember
	A	goal	of	database	normalization	is	the	elimination	of	repeating	groups	of	data	and
minimizing	the	schema	change.
	By	eliminating	repeating	groups	of	data,	you	can	use	indexing	to	prevent	accidental
duplication	of	data,	and	you	greatly	simplify	any	queries	needed.
	Removing	repeating	groups	of	data	makes	the	design	more	flexible	because	adding	a	new
group	simply	requires	adding	another	row	of	data,	not	changing	the	table	design	to	add	more
columns.

Item	4:	Store	Only	One	Property	per	Column
In	relational	terminology,	a	relation	(table)	should	describe	one	and	only	one	subject	or	action.
Attributes	(columns)	contain	the	data	pertaining	to	one	and	only	one	property	(often	referred	to	as
“atomic”	data)	that	describes	the	subject	defined	by	the	relation.	An	attribute	can	also	be	a
foreign	key	containing	an	attribute	from	another	relation,	and	this	foreign	key	provides	the
relationship	to	some	tuple	(row)	in	another	relation.
It	is	not	a	good	idea	to	store	more	than	one	property	value	in	a	single	column	because	that	makes
it	difficult	to	isolate	that	property	value	when	performing	searches	or	aggregating	values.
Fundamentally,	you	should	consider	putting	important	individual	properties	in	their	own	columns.
You	can	see	an	example	of	a	table	containing	multiple	properties	in	columns	in	Table	1.1	on	the
next	page.	(By	the	way,	those	are	real	addresses	in	the	sample	data,	but	not	the	actual	addresses	of
the	named	authors.)

Table	1.1	A	table	containing	multiple	attributes	in	several	columns

A	table	like	this	has	several	problems:
	It	is	difficult	if	not	impossible	to	search	on	last	name.	Assuming	the	table	contains	more
than	just	the	four	sample	rows,	and	you	want	to	search	for	someone	with	a	last	name	of
Smith,	a	LIKE	search	using	wildcards	may	also	return	Smithson	or	Blacksmith.



	You	can	search	for	first	name,	but	you	have	to	use	the	less	efficient	LIKE	or	pull	out	the
name	as	a	substring.	A	LIKE	with	a	trailing	wildcard	may	be	processed	efficiently,	but
because	the	name	might	have	a	salutation	(such	as	Mr.),	you	have	to	use	a	leading	wildcard
to	ensure	that	you	find	the	name	you	want,	and	that	will	cause	a	data	scan.
	You	cannot	easily	search	for	street	name,	city,	state/province,	or	postal	code.
	When	attempting	to	group	the	data	(perhaps	joined	with	another	table	that	lists	assigned
chapters	and	page	counts),	it	is	tough	to	extract	the	state/province,	postal	code,	or	country	to
do	the	grouping.

You	are	more	likely	to	see	data	like	this	when	you	have	imported	information	from	an	external
data	source	such	as	a	spreadsheet.	But	it	is	also	not	uncommon	to	find	such	a	badly	designed	table
in	a	production	database.
A	more	correct	solution	would	be	to	create	a	table	similar	to	that	shown	in	Listing	1.3.

Listing	1.3	SQL	to	create	an	Authors	table	with	the	attributes	separated

Click	here	to	view	code	image

CREATE	TABLE	Authors	(
		AuthorID	int	IDENTITY	(1,1),
		AuthFirst	varchar(20),
		AuthMid	varchar(15),
		AuthLast	varchar(30),
		AuthStNum	varchar(6),
		AuthStreet	varchar(40),
		AuthCity	varchar(30),
		AuthStProv	varchar(2),
		AuthPostal	varchar(10),
		AuthCountry	varchar(35)
);

INSERT	INTO	Authors	(AuthFirst,	AuthMid,	AuthLast,	AuthStNum,
				AuthStreet,	AuthCity,	AuthStProv,	AuthPostal,	AuthCountry)
		VALUES	('John',	'L.',	'Viescas',	'144',
				'Boulevard	Saint-Germain',	'Paris',	'	',	'75006',	'France');

INSERT	INTO	Authors	(AuthFirst,	AuthMid,	AuthLast,	AuthStNum,
				AuthStreet,	AuthCity,	AuthStProv,	AuthPostal,	AuthCountry)
		VALUES	('Douglas',	'J.',	'Steele',	'555',
				'Sherbourne	St.',	'Toronto',	'ON',	'M4X	1W6',	'Canada');

--		...	additional	rows.

Note	that	we	have	used	a	character	data	type	for	street	number	because	it	is	common	for	a	street
“number”	to	also	include	letters	or	other	characters.	For	example,	some	street	numbers	include	½.
In	France,	street	numbers	often	contain	the	characters	bis	attached	to	a	number.	The	same
consideration	applies	to	postal	codes	that	are	numeric	in	the	United	States	but	include	letters	and
spaces	in	places	like	Canada	and	the	United	Kingdom.
Using	the	suggested	table	design,	the	data	can	now	be	split	into	one	attribute	per	column	as	shown
in	Table	1.2	on	the	next	page.



Table	1.2	A	properly	designed	Authors	table	with	one	attribute	per	column

Now	it	is	simple	to	perform	searches	or	groupings	on	any	one	or	more	of	the	individual
properties	because	there	is	only	one	property	per	column.
If	you	need	to	recombine	the	properties,	to	create	a	mailing	list,	for	example,	it	is	a	simple	matter
of	using	concatenation	in	SQL	to	get	back	the	original	data.	Listing	1.4	on	the	next	page	shows	one
way	to	do	it.

Listing	1.4	Reassembling	the	original	data	using	concatenation	in	SQL

Click	here	to	view	code	image

SELECT	AuthorID	AS	AuthID,	CONCAT(AuthFirst,
		CASE
				WHEN	AuthMid	IS	NULL
				THEN	'	'
				ELSE	CONCAT('	',	AuthMid,	'	')
		END,	AuthLast)	AS	AuthName,
		CONCAT(AuthStNum,	'	',	AuthStreet,	'	',
						AuthCity,	',	',	AuthStProv,	'	',
						AuthPostal,	',	',	AuthCountry)
				AS	AuthAddress
FROM	Authors;

Note
IBM	DB2,	Microsoft	SQL	Server,	MySQL,	Oracle,	and	PostgreSQL	all	support	the
CONCAT()	function;	however,	DB2	and	Oracle	accept	only	two	arguments,	so	you
must	nest	CONCAT()	functions	to	concatenate	multiple	strings.	The	ISO	Standard
defines	only	the	operator	||	to	perform	concatenation.	DB2,	Oracle,	and



PostgreSQL	accept	the	||	concatenation	operator,	and	MySQL	accepts	it	if	the
server	sql_mode	includes	PIPES_AS_CONCAT.	In	SQL	Server,	you	can	use	+	as
a	concatenation	operator.	Microsoft	Access	does	not	support	the	CONCAT()
function,	but	you	can	concatenate	strings	using	either	&	or	+.

We	earlier	noted	that	Listing	1.3	is	one	of	several	possible	“more	correct”	designs,	and	you	might
be	wondering	why	we	recommend	separating	the	street	number	from	the	rest	of	the	street	address.
In	truth,	in	most	applications,	including	the	street	number	with	the	street	name	will	work	just	fine.
You	must	carefully	consider	the	needs	of	your	application.	For	a	land	survey	database,	separating
the	street	number	from	the	street	name	(and	perhaps	the	designation	as	to	“street,”	or	“avenue,”	or
“boulevard”)	could	be	crucial.	In	some	other	applications,	it	may	be	important	to	separate	the
country	code,	area	code,	and	local	phone	number	parts	of	a	phone	number.	You	need	to	decide
what	parts	are	important	enough	to	dictate	a	finer	granularity	when	identifying	attributes.
It	is	clear	that	separating	properties	into	individual	columns	makes	it	easy	to	perform	searches	or
groupings	on	the	individual	bits	of	data.	It	is	also	simple	to	reassemble	those	pieces	when	needed
for	a	report	or	a	printed	list.

Things	to	Remember
	Correct	table	design	assigns	each	individual	property	to	its	own	column,	because	when	a
column	contains	multiple	properties,	searching	and	grouping	become	difficult	if	not
impossible.
	For	some	applications,	the	need	to	filter	the	parts	in	columns	such	as	address	or	phone
number	may	dictate	the	level	of	granularity.
	When	you	need	to	reassemble	properties	for	a	report	or	a	printed	listing,	use	concatenation.

Item	5:	Understand	Why	Storing	Calculated	Data	Is	Usually	a	Bad	Idea
You	might	sometimes	be	tempted	to	store	calculated	data,	especially	when	the	calculation
depends	on	data	in	a	related	table.	Consider	the	example	in	Listing	1.5.

Listing	1.5	Sample	table	definition	SQL

Click	here	to	view	code	image

CREATE	TABLE	Orders	(
		OrderNumber	int	NOT	NULL,
		OrderDate	date	NULL,
		ShipDate	date	NULL,
		CustomerID	int	NULL,
		EmployeeID	int	NULL,
		OrderTotal	decimal(15,2)	NULL
);

At	first	glance,	including	the	OrderTotal	in	the	Orders	table	(presumably	the	sum	of
Quantity	*	Price	from	the	related	Order_Details	table)	seems	like	a	good	idea
because	it	won’t	be	necessary	to	fetch	the	related	rows	and	perform	the	calculation	each	time	you



want	all	the	orders	and	the	amount	due.	The	type	of	calculated	field	might	be	fine	in	a	data
warehouse	but	could	have	significant	performance	impact	in	an	active	database.	(See	also	Item	9,
“Use	denormalization	for	information	warehouses.”)	You	may	find	it	difficult	to	maintain	data
integrity	because	you	must	be	sure	to	recalculate	the	value	each	time	any	related
Order_Details	row	is	changed,	inserted,	or	deleted.
The	good	news	is	that	many	modern	database	systems	provide	a	way	to	maintain	such	a	field	so
that	code	running	on	the	server	performs	the	calculation	for	you.	The	most	primitive	way	to	ensure
that	a	calculated	column	remains	current	is	to	attach	a	trigger	to	the	table	containing	the	source
columns	for	the	calculation.	A	trigger	is	code	you	write	that	runs	when	the	target	table	is	inserted,
updated,	or	deleted.	In	the	example	in	Listing	1.5,	you	would	need	a	trigger	on	the
Order_Details	table	to	recalculate	the	OrderTotal	column	value.	But	triggers	can	be
expensive	and	difficult	to	write	correctly.	(See	also	Item	13,	“Don’t	go	overboard	with	triggers.”)
Potentially	better	than	triggers,	several	database	systems	give	you	a	method	for	defining	a
calculated	column	when	you	create	the	table.	We	say	this	is	better	than	triggers	because	defining
the	calculated	column	as	part	of	the	table	definition	can	avoid	the	complex	code	often	required	in
a	trigger.	Several	RDBMSs,	especially	in	more	recent	versions,	already	support	defining	a
calculated	column.	For	instance,	Microsoft	SQL	Server	gives	you	the	AS	keyword	followed	by	an
expression	that	defines	the	computation	you	require.	When	the	calculation	uses	only	columns	from
the	same	table,	you	can	simply	write	the	expression	on	the	other	columns	as	the	definition	of	the
calculated	column.	If	the	calculation	depends	on	values	in	a	related	table,	some	systems	allow
you	to	write	a	function	to	perform	the	calculation,	then	call	that	function	in	the	AS	clause	you	use
to	define	the	column	when	you	create	or	alter	the	target	table.	Listing	1.6	shows	a	sample	function
and	table	definition	using	Microsoft	SQL	Server.	Note	that	because	the	function	depends	on	data
from	another	table,	it	is	nondeterministic,	so	you	cannot	build	an	index	on	the	calculated	field.

Deterministic	versus	Nondeterministic
A	deterministic	function	is	one	that	always	returns	the	same	result	any	time	it	is
called	with	a	specific	set	of	input	values.	A	nondeterministic	function	may	return
different	results	each	time	it	is	called	with	a	specific	set	of	input	values.	For
instance,	the	SQL	Server	DATEADD()	built-in	function	is	deterministic	because	it
always	returns	the	same	result	for	any	given	set	of	values	for	its	three	parameters,
whereas	GETDATE()	is	nondeterministic	because	it	is	always	invoked	with	the
same	argument,	yet	the	value	it	returns	can	change	each	time	it	is	executed.	(This
assumes	that	the	three	parameters	for	DATEADD()	are	also	deterministic.	For
example,	you	cannot	use	GETDATE()	as	one	of	the	parameters.)	See	the	Appendix,
“Date	and	Time	Types,	Operations,	and	Functions,”	for	details	about	date	and	time
functions	provided	by	your	database	system.

Listing	1.6	Sample	function	and	table	definition	SQL	for	Microsoft	SQL	Server

Click	here	to	view	code	image

CREATE	FUNCTION	dbo.getOrderTotal(@orderId	int)



RETURNS	money
AS
BEGIN
		DECLARE	@r	money
		SELECT	@r	=	SUM(Quantity	*	Price)
		FROM	Order_Details	WHERE	OrderNumber	=	@orderId
		RETURN	@r;
END;
GO
CREATE	TABLE	Orders	(
		OrderNumber	int	NOT	NULL,
		OrderDate	date	NULL,
		ShipDate	date	NULL,
		CustomerID	int	NULL,
		EmployeeID	int	NULL,
		OrderTotal	money	AS	dbo.getOrderTotal(OrderNumber)
);

It	is	actually	a	very	bad	idea	to	do	it	this	way.	Because	the	function	is	nondeterministic,	the
column	cannot	be	PERSISTED	as	a	real	column	in	the	table.	You	cannot	build	an	index	on	the
column,	and	you	will	encounter	lots	of	server	overhead	anytime	you	reference	that	column
because	the	server	must	call	the	function	for	each	and	every	row.	It	would	be	much	more	efficient
to	join	the	table	with	a	subquery	that	does	the	calculation	grouped	on	the	OrderID	column	any
time	you	need	the	result.
In	IBM	DB2,	there	is	a	similar	facility,	but	the	keyword	is	GENERATED.	However,	DB2
absolutely	disallows	creating	a	calculated	column	on	a	function	that	calls	a	query—again,
because	it	makes	the	function	nondeterministic.	You	can,	however,	define	a	column	using	a
function	call	or	expression	that	is	deterministic.	Listing	1.7	shows	how	to	define	an	expression
that	calculates	quantity	times	price	to	return	an	extended	price	value	to	create	a	column	in	the
Order_Details	table.

Listing	1.7	Sample	table	column	definition	SQL	using	an	expression	for	DB2

Click	here	to	view	code	image

--	Turn	off	integrity	so	we	can	change	the	table
SET	INTEGRITY	FOR	Order_Details	OFF;
--	Create	the	calculated	column	using	an	expression
ALTER	TABLE	Order_Details
		ADD	COLUMN	ExtendedPrice	decimal(15,2)
				GENERATED	ALWAYS	AS	(QuantityOrdered	*	QuotedPrice);
--	Turn	integrity	back	on
SET	INTEGRITY	FOR	Order_Details
IMMEDIATE	CHECKED	FORCE	GENERATED;
--	Index	the	calculated	column
CREATE	INDEX	Order_Details_ExtendedPrice
		ON	Order_Details	(ExtendedPrice);

Because	the	expression	is	now	deterministic,	you	can	create	the	column	on	the	table	and	index	it.
Listing	1.7	shows	an	example	for	DB2,	but	we	have	included	examples	for	other	database
systems	in	the	listing	files	(as	Listing	1.007	on	GitHub	at
https://github.com/TexanInParis/Effective-SQL).

https://github.com/TexanInParis/Effective-SQL


If	you	want	to	have	a	calculated	column	in	Oracle	(called	a	“virtual	column”),	use	GENERATED
[ALWAYS]	AS.	The	SQL	to	create	the	ExtendedPrice	column	in	the	Order_Details
table	in	Oracle	might	look	like	Listing	1.8.

Listing	1.8	Sample	table	definition	SQL	with	inline	expression	for	Oracle

Click	here	to	view	code	image

CREATE	TABLE	Order_Details	(
		OrderNumber	int	NOT	NULL,
		OrderNumber	int	NOT	NULL,
		ProductNumber	int	NOT	NULL,
		QuotedPrice	decimal(15,2)	DEFAULT	0	NULL,
		QuantityOrdered	smallint	DEFAULT	0	NULL,
		ExtendedPrice	decimal(15,2)
				GENERATED	ALWAYS	AS	(QuotedPrice	*	QuantityOrdered)
);

At	this	point	you	are	probably	wondering	why	the	title	of	this	item	is	“Understand	why	storing
calculated	data	is	usually	a	bad	idea”	when	we	have	just	gone	to	great	lengths	to	show	you	how	to
do	it.	Now	for	the	bad	news:	if	this	table	is	meant	to	be	used	in	a	high-volume	online	data	entry
system,	adding	a	calculated	column	like	this	may	result	in	significant	overhead	on	the	server	that
can	negatively	affect	response	times.
If	you	are	using	IBM	DB2,	Microsoft	SQL	Server,	or	Oracle,	you	may	also	be	able	to	define	an
index	on	the	calculated	column,	which	will	generally	help	queries	that	depend	on	the	calculated
results	to	perform	faster.	Remember	that	you	won’t	be	able	to	create	an	index	on	the	example	from
Listing	1.6	in	SQL	Server	(nor	could	you	for	other	database	systems)	because	it	is
nondeterministic—it	depends	on	a	lookup	to	another	table	in	the	database.	(See	also	Item	17,
“Know	when	to	use	calculated	results	in	indexes.”)
With	SQL	Server,	you	must	take	the	additional	step	of	specifying	the	PERSISTED	keyword	on
the	expression,	whereas	with	DB2,	it	is	persisted	automatically	once	you	create	an	index	on	the
expression.
In	the	case	of	Listing	1.7,	the	overhead	occurs	whenever	the	value	of	the	called	function	might
change—whenever	you	update,	insert,	or	delete	a	row	in	Order_Details.	Someone	sitting	at
a	terminal	entering	many	order	items	may	experience	unacceptable	response	times	because	the
function	must	be	executed	to	calculate	and	store	the	value	for	the	index.	In	Listing	1.6	or	Listing
1.8,	the	overhead	occurs	every	time	you	fetch	that	column	from	the	Orders	table,	so	response
times	may	be	unacceptable	when	performing	a	SELECT	that	includes	the	calculated	column	and
asks	for	many	rows.

Things	to	Remember
	Many	systems	let	you	define	calculated	columns	when	you	define	your	table,	but	you	need
to	be	aware	of	the	performance	implications,	particularly	when	using	nondeterministic
expressions	or	functions.
	You	can	also	define	calculated	columns	as	regular	columns	and	then	maintain	them	with
triggers,	but	the	code	to	do	so	may	be	complex.



	Calculated	columns	cause	additional	overhead	in	your	database	system,	so	use	them	only
when	the	benefits	outweigh	the	costs.
	Most	of	the	time,	you	will	want	to	create	an	index	on	the	calculated	columns	to	reap	some
benefits	in	exchange	for	increased	storage	and	slower	updates.
	Using	views	to	define	calculations	is	often	a	desirable	alternative	to	actually	storing
calculations	on	a	table	for	cases	where	indexing	does	not	apply.

Item	6:	Define	Foreign	Keys	to	Protect	Referential	Integrity
When	you	design	a	database	schema	correctly,	you	have	foreign	keys	in	many	of	your	tables	that
contain	the	primary	key	value	of	the	related	parent	table.	For	example,	the	Orders	table	in	a
Sales	Orders	database	should	have	a	CustomerID	or	CustomerNumber	column	that	points
to	the	related	primary	key	of	the	Customers	table	so	that	you	can	identify	the	customer	who
placed	each	specific	order.
Figure	1.8	shows	a	possible	layout	for	a	“typical”	Sales	Orders	database.

Figure	1.8	Table	design	for	a	typical	Sales	Orders	database



Note
Figure	1.8	was	created	using	the	diagramming	tool	in	Microsoft	SQL	Server
Management	Studio.	Similar	tools	exist	in	DB2,	MySQL,	Oracle,	and	Microsoft
Access,	and	in	modeling	tools	such	as	Erwin	and	Idera	ER/Studio.

The	diagram	clearly	shows	the	relationships	among	the	various	tables.	The	key	symbol	on	one
end	of	each	relationship	line	indicates	that	the	relationship	is	from	the	primary	key	of	one	table,
and	the	infinity	symbol	on	the	other	end	of	the	line	indicates	a	“many”	relationship	to	a	foreign
key	in	the	second	table.
The	database	system	knows	the	relationships	between	the	tables	because	we	defined	Declarative
Referential	Integrity	(DRI)	constraints.	These	relationship	definitions	serve	two	purposes:

1.	The	graphical	query	designer	for	the	database	knows	how	to	correctly	construct	JOIN
clauses	when	you	use	the	designer	to	create	a	new	view	or	stored	procedure.

2.	The	database	system	knows	how	to	enforce	data	integrity	when	inserting	or	changing	a
table	on	the	“many”	side	of	a	relationship	or	changing	or	deleting	a	table	on	the	“one”	side
of	a	relationship.

It	is	the	second	point	that	is	most	important	because	you	need	to	ensure	that,	for	example,	no
Orders	rows	can	be	created	that	contain	an	invalid	or	missing	CustomerID.	If	it	is	possible
to	change	the	CustomerID	in	the	Customers	table,	you	want	to	be	sure	that	the	value
propagates	(specified	with	the	keyword	ON	UPDATE	CASCADE)	to	all	related	Orders	rows.
And	if	a	user	attempts	to	delete	a	Customers	row	that	has	related	rows	in	the	Orders	table,
you	want	to	ensure	that	either	the	deletion	of	the	customer	row	is	disallowed,	or	that	all	related
rows	in	the	Orders	table	are	also	deleted	(specified	with	ON	DELETE	CASCADE).
To	enable	this	important	feature	in	your	database	system,	you	need	to	add	a	FOREIGN	KEY
constraint	either	when	you	define	a	“many”	table	using	CREATE	TABLE,	or	by	adding	the
constraint	after	the	fact	using	ALTER	TABLE.	Let’s	look	at	how	to	do	this	on	the	Customers
and	Orders	tables.
First,	let’s	create	the	Customers	table.	Listing	1.9	shows	how.

Listing	1.9	Creating	a	Customers	table

Click	here	to	view	code	image

CREATE	TABLE	Customers	(
		CustomerID	int	NOT	NULL	PRIMARY	KEY,
		CustFirstName	varchar(25)	NULL,
		CustLastName	varchar(25)	NULL,
		CustStreetAddress	varchar(50)	NULL,
		CustCity	varchar(30)	NULL,
		CustState	varchar(2)	NULL,
		CustZipCode	varchar(10)	NULL,
		CustAreaCode	smallint	NULL	DEFAULT	0,
		CustPhoneNumber	varchar(8)	NULL
);



Next,	let’s	create	the	Orders	table	and	then	execute	an	ALTER	TABLE	to	define	the
relationship.	Listing	1.10	shows	how.

Listing	1.10	Creating	an	Orders	table	and	then	altering	it	to	define	the	relationship

Click	here	to	view	code	image

CREATE	TABLE	Orders	(
		OrderNumber	int	NOT	NULL	PRIMARY	KEY,
		OrderDate	date	NULL,
		ShipDate	date	NULL,
		CustomerID	int	NOT	NULL	DEFAULT	0,
		EmployeeID	int	NULL	DEFAULT	0,
		OrderTotal	decimal(15,2)	NULL	DEFAULT	0
);

ALTER	TABLE	Orders
		ADD	CONSTRAINT	Orders_FK99
				FOREIGN	KEY	(CustomerID)
						REFERENCES	Customers	(CustomerID);

Note	that	if	you	first	create	the	two	tables,	add	data	to	both	of	them,	and	then	decide	to	add	the
FOREIGN	KEY	constraint,	your	attempt	to	alter	the	Orders	table	might	fail	if	data	in	the	tables
fails	the	referential	integrity	check.	In	some	database	systems	it	might	succeed,	but	the	constraint
may	be	considered	untrusted	and	thus	not	used	by	the	optimizer,	so	simply	having	it	defined	is	not
necessarily	a	guarantee	that	it	has	been	enforced	for	data	that	existed	prior	to	the	constraint’s
creation.
You	can	also	define	the	constraint	when	you	create	the	child	table.	Listing	1.11	shows	how.

Listing	1.11	Defining	a	FOREIGN	KEY	constraint	when	you	create	a	table

Click	here	to	view	code	image

CREATE	TABLE	Orders	(
		OrderNumber	int	NOT	NULL	PRIMARY	KEY,
		OrderDate	date	NULL,
		ShipDate	date	NULL,
		CustomerID	int	NOT	NULL	DEFAULT	0
				CONSTRAINT	Orders_FK98	FOREIGN	KEY
						REFERENCES	Customers	(CustomerID),
		EmployeeID	int	NULL	DEFAULT	0,
		OrderTotal	decimal(15,2)	NULL	DEFAULT	0
);

On	some	database	systems	(notably	Microsoft	Access),	defining	a	referential	integrity	constraint
automatically	creates	an	index	on	the	foreign	key	column(s),	so	there	may	be	an	added
performance	benefit	when	performing	a	join.	For	those	database	systems	that	do	not	automatically
create	an	index	on	a	foreign	key	(such	as	DB2),	it	is	good	practice	to	create	an	index	to	optimize
constraint	checking.

Things	to	Remember
	Making	foreign	keys	explicit	helps	ensure	data	integrity	between	related	tables	by	ensuring



that	no	child	row	exists	without	a	matching	parent	row.
	Attempting	to	add	a	FOREIGN	KEY	constraint	to	tables	that	contain	data	will	fail	if	data
exists	that	violates	the	constraint.
	In	some	systems,	the	performance	of	joins	may	be	improved	because	defining	a	FOREIGN
KEY	constraint	automatically	builds	indexes.	On	other	systems,	you	must	take	care	to	create
an	index	to	cover	the	FOREIGN	KEY	constraint.	Even	without	indexes,	some	systems’
optimizer	may	treat	a	column	differently	and	produce	better	query	plans.

Item	7:	Be	Sure	Your	Table	Relationships	Make	Sense
You	can,	in	theory,	create	any	relationship	you	want	between	two	tables	as	long	as	the	data	types
of	each	pair	of	related	columns	are	the	same.	But	just	because	you	can	do	something	does	not
mean	you	should.	Consider	the	schema	diagram	of	a	database	containing	sales	order	information
in	Figure	1.9	on	the	next	page.

Figure	1.9	Schema	diagram	of	a	Sales	Orders	database

At	first	glance	it	seems	to	make	sense;	there	are	several	tables,	each	of	which	contains	a	single
subject.	Let’s	focus	on	three	of	the	tables:	Employees,	Customers,	and	Vendors.	If	you
study	those	three	tables,	you	will	see	that	they	have	lots	of	similar	fields.	Many	times	this	is	not
perceived	to	be	a	problem	because	the	data	in	the	three	tables	is	usually	distinct.
But	if	this	company	could	have	vendors	or	employees	who	are	also	the	customers	of	the	company,
this	model	violates	the	rules	against	duplicating	data	discussed	earlier	in	Item	2,	“Eliminate



redundant	storage	of	data	items.”	Some	might	try	to	solve	this	conundrum	by	creating	a	single
table,	perhaps	called	Contacts,	which	then	enumerates	all	kinds	of	contacts.	However,	this	is
not	without	problems.	For	one	thing,	EmployeeID,	CustomerID,	and	VendorID	now
would	all	come	from	a	single	primary	key	ContactID	that	gives	us	no	way	to	validate	that	this
ID	is	in	fact	a	bona	fide	vendor	who	happens	to	be	a	customer	occasionally.
Some	might	solve	this	problem	by	adding	Customers,	Vendors,	and	Employees	tables	that
contain	a	one-to-one	relationship	to	the	Contacts	table.	This	has	the	benefit	of	easily	keeping
entity-specific	data	such	as	ManagerID	or	VendWebPage	separate	from	other	customer	rows
that	need	neither	field.	However,	this	means	that	the	application	using	the	database	schema	is	now
much	more	complicated	because	it	must	have	the	logic	in	place	to	verify	whether	an	entity	exists,
and	if	so,	whether	it	has	the	required	domain-specific	data	filled	out.	After	all,	these	extra	tables
would	be	for	nothing	if	the	application	were	permitted	to	blindly	insert	new	records	without
searching	for	duplicates	first.	Understandably,	not	all	companies	want	to	spend	more	money	and
time	for	additional	complexity.	It	is	more	typical	that	a	company	selling	products	usually	does	not
have	customers	who	are	also	vendors	or	employees,	so	occasional	duplication	in	such	rare
situations	is	a	small	price	to	pay	for	simplification	of	the	database	schema.
Let’s	consider	the	scenario	where	we	need	to	assign	sales	territories	to	employees	and
consequently	map	customers	to	employees	based	on	those	territories.	One	way	to	do	this	would
be	to	create	a	relationship	between	the	CustZipCode	column	in	the	Customers	table	and	the
EmpZipCode	column	in	the	Employees	table.	Both	are	the	same	data	type	and	in	the	same
domain.	Instead	of	creating	a	relationship	between	the	tables,	you	could	perhaps	do	a	join	on	the
ZIP	code	columns	in	Employees	and	Customers	to	discover	which	customers	live	close	to
which	employees.
Although	it	is	possible	to	simply	create	a	foreign	key	EmployeeID	in	the	Customers	table
and	thus	relate	the	customer	to	an	employee,	this	actually	creates	more	problems.	For	one	thing,
suppose	the	customer	moves	to	another	sales	territory?	The	data	entry	clerk	might	correctly
update	the	customer’s	address	but	not	realize	or	remember	that	the	assigned	employee	needs	to	be
updated	for	that	customer,	introducing	a	new	source	of	errors.
It	would	be	better	to	have	a	table	called	SalesTerritory	that	has	a	foreign	key	of
EmployeeID,	and	the	rows	in	the	table	would	identify	the	ZIP	codes	(TerrZIP)	assigned	to
that	employee.	Each	ZIP	code	would	be	unique	within	the	SalesTerritory	table	because	you
would	not	want	to	assign	a	ZIP	code	to	more	than	one	employee.	It	would	then	be	valid	to	create	a
relationship	from	TerrZIP	to	the	Customers	table	so	that	an	employee	could	discover	which
customers	are	in	his	or	her	territory.
In	contrast,	if	employees	were	assigned	to	customers	according	to	some	criterion	other	than	the
sales	territory,	having	a	foreign	key	EmployeeID	in	the	Customers	table	might	actually	be	a
better	choice	to	reflect	the	more	arbitrary	nature	of	the	customer-employee	assignment.	This	still
works	even	if	the	sales	territory	is	the	default	assignment,	but	the	customers	have	the	liberty	of
asking	for	some	other	employee.	Like	the	previous	example,	this	approach	necessarily	implies
that	there	will	be	appropriate	programming	to	help	minimize	data	entry	errors.
A	similar	problem	exists	when	the	company	needs	to	list	all	products	it	sells	but	also	provide



detailed	data	on	each	product	and	all	of	its	attributes.	It	might	make	sense	for	a	lumber	company
to	have	a	product	table	that	has	columns	for	linear	feet,	height,	width,	and	wood	types.	After	all,
the	company	sells	lumber.	But	when	the	company	is	a	retail	store	selling	a	wide	variety	of
products,	adding	several	columns	that	are	very	sparsely	used	looks	like	a	bad	deal.	Nor	would
we	want	to	create	one	table	for	each	product	category	so	that	we	could	store	all	the	category-
specific	data.	In	this	situation,	some	might	find	it	preferable	to	create	an	Attribute	column
that	accepts	an	XML	or	JSON	document.	This	might	be	fine	when	no	business	rules	dictate	the
ability	to	expose	a	product’s	attributes	in	the	relational	table.	But	in	the	event	that	it	is	necessary
to	be	able	to	query	on	any	attributes,	creating	a	ProductAttributes	table	and	thus
transforming	the	columns	into	rows	and	relating	them	to	a	product	in	the	Products	table	would
achieve	the	goal.1	Listing	1.12	illustrates	a	possible	design	for	the	tables.

1.	This	is	often	referred	to	as	the	“entity-attribute-value”	or	EAV	model.

Listing	1.12	Creating	a	relationship	between	the	Products	and	ProductAttributes
tables

Click	here	to	view	code	image

CREATE	TABLE	Products	(
		ProductNumber	int	NOT	NULL	PRIMARY	KEY,
		ProdDescription	varchar(255)	NOT	NULL
);

CREATE	TABLE	ProductAttributes	(
		ProductNumber	int	NOT	NULL,
		AttributeName	varchar(255)	NOT	NULL,
		AttributeValue	varchar(255)	NOT	NULL,
		CONSTRAINT	PK_ProductAttributes
				PRIMARY	KEY	(ProductNumber,	AttributeName)
);

ALTER	TABLE	ProductAttributes
		ADD	CONSTRAINT	FK_ProductAttributes_ProductNumber
				FOREIGN	KEY	(ProductNumber)
						REFERENCES	Products	(ProductNumber);

Although	it	would	appear	that	we	have	solved	the	problem	by	storing	the	attributes	as	rows	rather
than	columns,	the	queries	to	extract	certain	products	with	certain	attributes	are	now	much	more
complicated,	especially	if	we	need	to	work	across	multiple	attributes.
Incidentally,	the	attributes	problem	illustrates	the	need	for	designers	to	be	able	to	differentiate
structured	data	from	semistructured	data.	In	a	relational	model,	the	data	must	be	well	defined	up
front,	having	all	possible	columns	and	data	types	enumerated	before	we	can	add	any	actual	data.
This	is	in	contrast	to	semistructured	data	such	as	XML	or	JSON	documents,	where	documents	do
not	necessarily	need	to	have	identical	schema,	even	at	the	level	of	a	record.	So	if	you	find
yourself	struggling	with	defining	the	relationships,	it	might	be	worthwhile	to	ask	whether	you	are,
in	fact,	dealing	with	semistructured	data	and	whether	you	really	need	to	have	it	exposed	directly
in	the	relational	model.	The	SQL	Standards	now	cover	using	XML	and	JSON	directly	in	SQL,
which	gives	you	even	more	options,	but	that	discussion	is	beyond	the	scope	of	this	book.
The	preceding	discussion	should	illustrate	the	point	that	it	is	the	business	that	dictates	whether	a



data	model	is	correct,	and	you	need	to	factor	in	the	application’s	design.	This	is	often	a	challenge
because	people	are	more	likely	to	allow	the	application	to	drive	the	data	model	design	when	it
should	actually	be	the	other	way	around.	In	reality,	choosing	one	data	model	over	another	usually
entails	significant	changes	in	how	one	should	design	the	applications	that	will	use	the	database.
These	changes	can	influence	the	costs	and	time	to	market	for	the	application.

Things	to	Remember
	Carefully	examine	whether	it	really	makes	sense	to	combine	tables	that	appear	to	contain
similar	columns	in	order	to	simplify	relationships.
	You	can	create	a	join	between	columns	in	two	tables	as	long	as	the	data	types	match	(or	can
be	implicitly	casted),	but	a	relationship	is	valid	only	if	the	columns	are	in	the	same	domain.
However,	it	is	optimal	to	have	the	same	data	types	on	both	sides	of	the	join.
	Check	whether	you	are	in	fact	dealing	with	structured	data	before	including	it	in	your	data
model.	If	the	data	is	semistructured,	make	the	necessary	provisions.
	It	is	usually	helpful	to	clearly	identify	the	goals	of	a	data	model	to	help	you	assess	whether
a	given	design	justifies	the	added	complexity	or	anomalies	due	to	simplifications	and	the
design	of	the	applications	using	the	data	model.

Item	8:	When	3NF	Is	Not	Enough,	Normalize	More
A	common	myth	is	the	idea	that	third	normal	form	is	usually	sufficient	for	most	applications.
Many	practitioners	have	heard	and	quoted	that	“3NF	is	usually	enough,”	or	maybe	“Normalize
until	it	hurts,	then	denormalize	until	it	works.”	The	problem	with	those	pithy	sayings	is	that	they
imply	that	higher	normal	forms	require	more	modifications	to	achieve,	but	in	fact	it	is	more	that
for	most	data	models,	an	entity	that	is	already	in	third	normal	form	likely	already	satisfies	the
higher	normal	forms.	In	fact,	many	reference	tables	in	many	databases	today	are	already	in	5NF	or
even	6NF,	though	people	call	it	3NF.	Therefore,	one	actually	needs	to	look	for	cases	where	a
table	is	in	third	normal	form	but	violates	the	higher	normal	forms.	That	is	a	rare	subset,	but	it	does
happen,	and	when	it	does	happen,	it	is	very	easy	to	make	design	mistakes	that	generate	data
anomalies	even	though	the	table	seems	to	have	satisfied	the	third	normal	form.
A	warning	flag	that	a	design	is	in	3NF	but	could	violate	the	higher	normal	forms	is	when	a	table	is
related	to	more	than	one	other	table.	This	is	especially	the	case	if	it	participates	in	more	than	one
many-to-many	relationship.	Another	sign	is	when	a	table	contains	composite	keys	that	could
violate	the	higher	normal	forms.	Be	wary	when	you	are	using	surrogate	keys	and	instead	analyze
the	natural	keys,	as	the	later	examples	will	make	clearer.
As	a	quick	reminder,	the	first	three	normal	forms	(as	well	as	Boyce-Codd	normal	form)	concern
themselves	with	the	functional	dependency	among	a	relation’s	attributes.	By	functional
dependency,	we	mean	that	the	attribute	is	dependent	on	the	key	of	the	relation.	For	example,	a
column	storing	a	phone	number	that	contains	“466.315.0072”	can	be	said	to	be	functionally
dependent	on	the	column	storing	“Douglas	J.	Steele,”	as	in	asserting	that	this	phone	number
belongs	to	him,	and	other	attributes	do	not	influence	the	association	of	that	phone	number	to	that
person.	If	the	phone	number	depended	on	some	other	attributes	that	are	not	a	key,	we	are	subject
to	data	anomalies.



With	the	fourth	normal	form,	we	are	now	concerned	with	multivalued	dependency.	This	deals
with	cases	where	two	attributes	are	independent	of	each	other	but	both	depend	on	the	same	key	of
the	relation.	This	then	creates	a	number	of	possible	combinations	between	two	attributes.	There	is
a	special	case	where	we	could	violate	the	fourth	normal	form.	Consider	products	that	a
salesperson	may	sell	in	Table	1.3.

Table	1.3	A	table	containing	products	sold	by	salespeople

What	is	not	implied	from	the	table	is	the	fact	that	each	manufacturer	produces	only	two	products,
and	that	the	salesperson	who	carries	a	manufacturer	must	sell	all	products	made	by	that
manufacturer.	Therefore,	if	Sheila	decided	to	start	selling	Ace,	we	would	need	to	insert	two
rows,	one	for	Ace’s	Dicer	product	and	another	for	Ace’s	Whomper	product.	That	can	allow	for
data	anomalies	if	we	do	not	update	the	table	properly.	Therefore,	to	avoid	this	possibility,	we
should	decompose	the	table	into	the	tables	illustrated	in	Figure	1.10.

Figure	1.10	Schema	diagram	of	a	salesperson’s	inventory	database

With	this	model,	we	only	need	to	list	all	products	that	any	salesperson	might	sell.	We	then	map	it
to	manufacturers	that	actually	manufacture	those	products.	We	then	infer	the	products	a	given
salesperson	actually	sells	by	joining	SalespeopleManufacturers	with



ManufacturerProducts	to	get	back	the	same	result	as	in	Table	1.3.	It	is	important	to	note
that	we	are	following	a	business	rule	that	a	salesperson	must	sell	all	products	that	a	manufacturer
produces.	But	in	the	real	world,	it	is	more	likely	that	a	salesperson	sells	only	a	subset	of	products
produced	by	a	manufacturer.	In	that	case,	the	data	in	Table	1.3	no	longer	violates	the	fourth
normal	form.	That	illustrates	the	point	why	higher	normal	forms	are	rare;	most	business	rules	we
have	in	place	cause	a	data	model	to	satisfy	higher	normal	forms	already.
The	fifth	normal	form	requires	that	the	candidate	keys	imply	all	join	dependencies.	Consider	the
non-normalized	data	in	Table	1.4	on	the	next	page	that	lists	offices,	equipment,	and	doctors.

Table	1.4	A	table	containing	multiple	attributes	in	several	columns

In	this	data	model,	we	need	to	schedule	doctors	to	offices	where	they	can	perform	work	on
particular	equipment.	We	assume	that	the	doctors	are	trained	on	the	equipment,	so	it	makes	no
sense	to	send	doctors	to	an	office	without	any	equipment	that	they	are	qualified	to	use.	But	not	all
doctors	receive	the	same	training;	some	might	be	relatively	new,	or	might	specialize	a	bit
differently,	so	not	all	share	the	same	set	of	skills.
So,	we	have	office	locations,	and	we	have	equipment.	Those	overlap	but	are	quite	independent;
an	office	having	a	particular	piece	of	equipment	has	nothing	to	do	with	whether	a	doctor	is	trained
to	use	that	equipment.	A	possible	attempt	is	to	set	up	a	data	model	with	six	tables,	illustrated	in
Figure	1.11.



Figure	1.11	Schema	diagram	of	a	doctor/equipment/office	scheduling	database

Note	that	there	are	three	base	tables—Doctors,	Equipment,	and	Offices—and	then	there
is	a	junction	table	for	each	possible	pair:	DoctorEquipment	for	{Doctors,	Equipment},
OfficeEquipment	for	{Offices,	Equipment},	and	DoctorSchedule	for
{Doctors,	Offices}	with	the	Equipment	implied.	Therefore,	if	a	new	office	opens	or	an
existing	office	adds	new	equipment,	or	a	doctor’s	training	changes,	all	these	factors	are
independent	and	do	not	create	anomalies	between	each	pair.	However,	we	are	at	risk	of	creating
anomalies	with	the	DoctorSchedule	table.	It	is	possible	to	create	a	pair	of	doctor	and	office
where	either	the	doctor	lacks	the	required	training	on	the	equipment	or	the	office	lacks	the
equipment.	That	is	problematic	and	thus	breaks	the	fifth	normal	form.	To	remedy	this,	we	need	to
set	up	the	data	model	as	shown	in	Figure	1.12.

Figure	1.12	Improved	schema	diagram	of	a	doctor/equipment/office	scheduling	database



Note	that	the	DoctorSchedule	table	has	two	foreign	keys	that	partially	overlap	on	the
EquipmentID	column.	Those	two	FOREIGN	KEY	constraints	work	together	to	ensure	that
only	a	valid	combination	of	doctor	and	office	can	be	selected	for	any	particular	piece	of
equipment,	saving	us	from	writing	programming	logic	to	enforce	this,	and	thus	preventing	any	data
anomalies.	Note	that	we	did	not	change	the	design	of	the	tables.	We	merely	changed	the
relationships.
Again,	it	is	noteworthy	that	had	we	not	required	the	EquipmentID	as	a	column	in	the
DoctorSchedule	table,	the	schema	in	Figure	1.11	would	already	be	in	5NF.	So	if	we	only
want	to	schedule	a	doctor	to	an	office,	without	saying	whether	the	doctor	is	assigned	to	equipment
as	part	of	the	schedule,	we	would	be	fine	with	the	first	schema	in	Figure	1.11.
Another	thing	to	note	from	the	example	is	that	we	use	the	composite	keys.	Had	we	created
surrogate	keys	in	the	junction	tables	OfficeEquipment	and	DoctorTraining,	they	would
have	obfuscated	the	EquipmentID,	and	thus	we	could	not	achieve	the	model	in	Figure	1.12	at
all.	Therefore,	if	you	use	surrogate	keys	by	default,	you	must	take	extra	care	to	investigate
whether	they	potentially	hide	crucial	information	in	your	schema.	Take	note	of	any	foreign	keys
that	participate	in	many-to-many	relationships	and	analyze	them	to	determine	if	they	hold	any
implications	for	the	relationships.
Lossless	decomposition	is	a	method	you	can	use	to	analyze	violations	of	higher	normal	forms.
Whenever	you	have	a	large	table,	you	should	decompose	a	subset	of	columns,	as	though	you	had
performed	a	SELECT	DISTINCT	on	the	subset,	then	note	whether	the	results	can	then	be	joined
back	together	using	LEFT	OUTER	JOIN	to	return	the	same	result	as	the	original	table.	If	the
decomposed	tables	do	not	lose	any	data	upon	joining	the	results	back	together,	you	know	that	the
original	table	violates	some	normal	form	and	thus	requires	further	scrutiny	to	decide	if	you	will
have	problems	with	data	anomalies.	Table	1.5	illustrates	the	decomposed	tables	of	Table	1.3.

Table	1.5	Decomposed	tables	from	Table	1.3

If	you	then	go	back	to	the	examples	we	used	to	illustrate	violations	of	4NF	and	5NF,	you	can	see
that	if	we	were	to	take	out	one	row	from	Table	1.3,	the	join	between	the
SalespeopleManufacturers	and	ManufacturerProducts	tables	is	now	“lossy,”
because	the	join	of	tables	in	Table	1.5	won’t	match	the	modified	Table	1.3.	In	that	case	the
modified	Table	1.3	no	longer	violates	4NF.	Similarly,	if	EquipmentID	was	not	a	column	in	the



DoctorSchedule	table,	we	would	have	losses	once	again,	and	thus	5NF	is	not	violated.2
Note	that	the	analysis	assumes	we	have	enough	data	within	the	tables	for	decomposing	to	properly
determine	if	losses	will	occur	or	not.

2.	In	fact,	if	all	fields	in	the	schema	shown	in	Figure	1.12	are	not	nullable,	it	is	already	in	6NF.

Things	to	Remember
	Higher	normal	forms	are	likely	to	be	already	achieved	in	most	data	models.	Therefore,	you
need	to	watch	for	cases	where	higher	normal	forms	are	explicitly	violated.	It	is	more	likely
for	tables	that	have	composite	keys	or	participate	in	several	many-to-many	relationships.
	Fourth	normal	form	can	be	violated	by	the	special	case	where	all	possible	combinations	of
two	unrelated	attributes	on	an	entity	must	be	enumerated	for	that	entity.
	Fifth	normal	form	deals	with	ensuring	that	all	join	dependencies	are	implied	by	candidate
keys,	meaning	that	you	should	be	able	to	constrain	what	are	valid	values	for	a	candidate	key
based	on	the	individual	elements.	This	can	happen	only	if	the	key	is	composite.
	Sixth	normal	form	deals	with	reducing	the	relations	to	only	one	non-key	attribute	generally,
thus	resulting	in	an	explosion	of	tables,	but	enabling	us	to	never	need	to	define	a	nullable
column.
	Testing	for	lossless	decomposition	can	be	an	effective	tool	for	detecting	if	your	table
violates	higher	normal	forms.

Item	9:	Use	Denormalization	for	Information	Warehouses
As	developers,	we	have	the	importance	of	normalized	databases	being	constantly	driven	home	to
us.	Normalized	tables	are	usually	smaller	and	have	a	smaller	footprint	than	non-normalized	ones.
Because	the	data	is	divided	among	many	tables,	performance	is	usually	better	because	the	tables
are	small	enough	to	fit	into	the	buffer.	Because	the	data	is	located	in	a	single	place,	updates	and
inserts	are	fast.	Because	the	data	is	not	duplicated,	there	is	less	need	for	heavy-duty	GROUP	BY
or	DISTINCT	queries.
However,	these	arguments	hold	because	applications	are	usually	write	intensive,	so	the	write
load	is	more	than	the	read	load.	For	information	warehouses,	though,	such	is	not	the	case:	there
may	be	no	write	load	at	all	between	the	data	loads,	but	even	when	there	is,	it	is	usually	far	less
than	the	read	load.	A	concern	with	fully	normalized	tables	is	that	normalized	data	means	joins
between	tables.	The	more	joins	there	are,	the	more	difficult	it	is	for	the	optimizer	to	find	the	best
possible	execution	plan,	which	can	hurt	the	performance	of	reads.
Denormalized	databases	work	well	under	heavy	read	loads,	because	the	data	is	present	in	fewer
tables	and	the	need	for	joins	lessens	or	entirely	disappears,	thus	resulting	in	faster	selects.	A
single	table	with	all	the	required	data	also	allows	for	much	more	efficient	index	usage.	If	the
columns	are	indexed	properly,	results	can	be	filtered	and	sorted	quickly	using	those	indexes
without	reading	the	wide	table	directly.	Also,	because	writes	are	infrequent,	there	is	no	concern
about	too	many	indexes	dramatically	affecting	write	performance.	You	can,	if	necessary,	index
every	column	in	the	table	to	dramatically	improve	search	and	sort	performance.
In	order	to	effectively	denormalize,	you	must	have	a	good	understanding	of	the	data	and	how	it
will	typically	be	accessed.



One	of	the	easiest	types	of	denormalization	is	to	replicate	identity	fields	in	tables	to	avoid	a	join.
For	instance,	a	normalized	database	might	have	the	EmployeeID	column	as	a	foreign	key	in	the
Customers	table	in	order	to	be	able	to	link	customers	to	their	account	managers.	If	there	is	a
need	to	report	invoices	together	with	account	manager	data,	you	need	to	join	three	tables
—Invoices,	Customers,	and	Employees.	However,	you	can	achieve	the	same	goal	if	you
replicate	the	EmployeeID	column	in	the	Invoices	table.	Now,	you	need	to	join	only	the
Invoices	and	Employees	tables.	Of	course,	there	would	be	no	benefit	to	doing	this	if	you
also	needed	data	from	the	Customers	table.
You	can	take	this	sort	of	denormalization	one	step	further.	For	example,	if	you	know	that	many
searches	in	the	data	warehouse	will	involve	looking	for	invoice	information	by	customer	name,	it
can	be	beneficial	to	store	not	only	the	CustomerID	but	also	the	name	in	the	Invoices	table
and	then	index	the	name.	Yes,	this	violates	normalization	rules	because	you	will	be	keeping
information	about	multiple	subjects	(invoices	and	customers)	in	one	table,	and	you	will	be
repeating	the	customer	name	information	in	many	rows.	But	the	main	purpose	of	a	data	warehouse
is	to	make	finding	information	easy	and	rapid.	Avoiding	the	join	to	get	the	customer	name
information	can	save	a	ton	of	valuable	resources.
Another	common	approach	is	to	add	indicative	fields	to	other	tables.	Not	only	can	this	result	in
better	performance,	but	it	can	also	help	with	maintaining	history.	A	fully	normalized	schema
usually	shows	only	the	current	state.	The	current	customer’s	address	is	kept	in	the	Customers
table.	If	the	customer	moves,	the	address	is	changed	to	the	new	one.	This	can	make	it	impossible
to	print	exact	copies	of	invoices	at	a	later	date	unless	you	maintain	history	about	the	customer’s
address.	However,	if	you	keep	a	copy	of	the	customer’s	address	information	at	the	time	of
invoicing	on	the	Invoices	table,	it	becomes	straightforward.
Storing	calculated	or	derived	values	is	another	common	denormalization.	Storing	a	total	amount
in	the	Invoices	table,	rather	than	totaling	each	relevant	row	in	the	InvoiceDetails	table,
not	only	reduces	the	number	of	tables	that	must	be	queried	but	eliminates	the	need	for	repeated
calculations.	Another	advantage	of	storing	computed	values	is	when	there	are	multiple	possible
ways	of	performing	a	given	calculation.	When	the	value	is	stored	in	the	table,	all	queries	against
the	database	result	in	the	same	calculation.
Yet	another	possibility	relates	to	the	use	of	repeating	groups.	If	a	common	requirement	is	to
compare	month-to-month	performance,	storing	all	12	months	in	a	single	row	reduces	the	number
of	rows	that	need	to	be	retrieved.
Remember	that	there	are	varying	requirements	for	how	the	data	in	an	information	warehouse	is
sliced	and	diced.	Data	warehouse	expert	Ralph	Kimball	describes	the	three	most	important
themes	of	data	warehouses	as	drilling	down,	drilling	across,	and	handling	time.3	He	talks	of	“fact
tables”	as	being	“the	fundamental	measurements	of	the	enterprise”	and	“the	ultimate	target	of	most
data	warehouse	queries”	but	is	quick	to	point	out	that	they	are	of	little	use	“unless	they	have	been
chosen	to	reflect	urgent	business	priorities,	have	been	carefully	quality	assured	and	are
surrounded	by	dimensions	that	provide	a	wealth	of	entry	points	for	constraining	and	grouping.”4

3.	www.kimballgroup.com/2003/03/the-soul-of-the-data-warehouse-part-one-drilling-down/
4.	www.kimballgroup.com/2008/11/fact-tables/

He	describes	three	types	of	fact	tables	as	follows:

http://www.kimballgroup.com/2003/03/the-soul-of-the-data-warehouse-part-one-drilling-down/
http://www.kimballgroup.com/2008/11/fact-tables/


1.	Transaction	fact	tables,	which	correspond	to	measurements	taken	at	a	single	instant
2.	Periodic	snapshot	fact	tables,	which	summarize	activity	during	or	at	the	end	of	a	predefined
span	of	time,	such	as	a	financial	reporting	period

3.	Accumulating	snapshot	fact	tables,	which	report	predictable	processes	with	well-defined
beginnings	and	ends,	such	as	order	processing,	claims	processing,	service	call	resolution,
and	college	admissions

Another	key	concept	that	Kimball	introduced	is	that	of	slowly	changing	dimensions.	As	he	put	it,
most	of	the	fundamental	measurements	stored	in	fact	tables	include	timestamps	and	foreign	keys
connecting	to	calendar	date	dimensions,	but	there	are	more	effects	of	time	than	just	activity-based
timestamps.	All	of	the	other	dimensions	that	connect	to	fact	tables,	including	fundamental	entities
such	as	customer,	product,	service,	terms,	location,	and	employee,	are	also	affected	by	the
passage	of	time.	Sometimes	the	revised	description	merely	corrects	an	error	in	the	data,	but	it	can
also	represent	a	true	change	at	a	point	in	time	of	the	description	of	a	particular	dimension
member,	such	as	a	customer	or	product.	Because	these	changes	occur	far	less	frequently	than	fact
table	measurements,	they	are	referred	to	as	slowly	changing	dimensions	(SCDs).5	Understanding
these	concepts	is	critical	for	designing	efficient	and	effective	data	warehouses.

5.	www.kimballgroup.com/2008/08/slowly-changing-dimensions/

If	you	decide	to	denormalize	your	data,	document	your	denormalization	thoroughly.	Describe,	in
detail,	the	logic	behind	the	denormalization	and	the	steps	that	you	took.	Then,	if	your	organization
ever	needs	to	normalize	the	data	in	the	future,	an	accurate	record	is	available	for	those	who	must
do	the	work.

Things	to	Remember
	Decide	what	data	to	duplicate	and	why.
	Plan	how	to	keep	the	data	in	sync.
	Refactor	the	queries	to	use	the	denormalized	fields.

http://www.kimballgroup.com/2008/08/slowly-changing-dimensions/


2.	Programmability	and	Index	Design

You	cannot	assume	that	merely	having	a	good	logical	data	model	design	will	allow	you	to	write
effective	SQL.	You	must	ensure	that	your	design	is	physically	implemented	in	an	appropriate
manner,	or	you	may	find	that	your	ability	to	extract	meaningful	information	from	the	data	in	an
efficient	manner	using	SQL	will	be	compromised.
One	of	the	key	elements	to	ensure	that	your	SQL	queries	perform	well	is	proper	indexing	of	the
tables.	The	items	in	this	chapter	help	you	understand	some	of	the	often-overlooked	considerations
when	implementing	your	correctly	designed	data	model.	Although	creation	of	the	tables	and
indexes	is	often	left	to	database	administrators	(DBAs),	it	turns	out	that	indexing	is	probably	best
done	by	the	developers.	DBAs	are	knowledgeable	about	storage	system	configuration	and
hardware	setup,	but	creating	proper	indexes	requires	knowledge	about	what	queries	will	be	run
against	the	data.	That	knowledge	usually	is	not	very	accessible	to	DBAs	or	external	consultants,
but	it	should	be	readily	available	to	the	application	developers.	The	items	in	this	chapter	help	you
understand	the	importance	of	indexes,	and	how	to	ensure	that	they	have	been	properly
implemented.
As	was	the	case	in	Chapter	1,	“Data	Model	Design,”	if	you	have	control	over	the	implementation
of	your	database,	you	can	review	your	model	with	regard	to	the	items	in	this	chapter	and	fix	any
problems	you	discover.	If	you	do	not	have	control	of	the	design,	you	can	use	the	information	in	the
items	in	this	chapter	to	provide	information	to	the	DBAs	to	allow	them	to	help	build	your
database	effectively.

Item	10:	Factor	in	Nulls	When	Creating	Indexes
A	null	is	a	special	value	in	a	relational	database	that	indicates	“unknown”	or	the	absence	of	data
in	a	column.	A	null	can	never	be	equal	to	or	not	equal	to	another	value,	not	even	another	null.	To
detect	the	presence	of	a	null	value,	you	must	use	the	special	IS	NULL	predicate.
You	will	typically	create	an	index	on	a	column	or	combination	of	columns	that	you	reference
frequently	in	predicates	so	that	the	performance	of	those	queries	is	improved.	When	you	index	a
column,	you	need	to	consider	whether	the	column	contains	null	values	and	understand	how	your
database	system	treats	null	values	in	indexes.
If	most	of	the	rows	in	your	database	contain	a	null	value	in	a	column	that	is	indexed,	that	index	is
probably	not	of	much	use	unless	you	always	search	for	something	other	than	NULL.	That	index
may	take	up	an	unreasonable	amount	of	storage	unless	your	database	system	offers	a	way	to
exclude	null	values	from	indexes.	Some	database	systems	treat	empty	strings	as	nulls	(the	system
changes	any	empty	string	supplied	as	a	column	value	into	NULL),	so	that	makes	your	decision
about	whether	to	index	a	column	or	not	more	difficult.
Each	database	system	has	different	ways	to	handle	null	values	in	an	index.	The	one	feature	that	is
common	to	all	the	major	database	systems	is	that	none	of	them	allow	a	null	value	in	any	column	in
a	primary	key.	That	is	a	requirement	of	the	ISO	SQL	Standard,	so	that	is	a	good	thing.	The
following	sections	explore	the	issues	relative	to	each	database	system	and	how	each	handles	null
values	and	zero-length	strings	in	indexes.



IBM	DB2
In	all	indexes	other	than	the	primary	key,	DB2	does	index	null	values.	You	can	explicitly
eliminate	null	values	in	a	UNIQUE	index	by	specifying	the	EXCLUDE	NULL	KEYS	option	when
you	create	the	index.	Listing	2.1	shows	an	example.

Listing	2.1	Excluding	null	values	in	a	UNIQUE	index	in	DB2

Click	here	to	view	code	image

CREATE	UNIQUE	INDEX	ProductUPC_IDX
		ON	Products	(ProductUPC	ASC)
		EXCLUDE	NULL	KEYS;

For	the	purposes	of	indexing,	DB2	considers	all	null	values	to	be	equal.	Therefore,	if	you	do	not
specify	WHERE	NOT	NULL	on	a	UNIQUE	index,	you	will	get	a	duplicate	error	if	you	attempt	to
insert	more	than	one	row	that	has	a	null	value	in	the	indexed	column.	The	second	row	with	a	null
value	will	be	considered	a	duplicate	of	the	existing	entry,	and	duplicates	are	not	allowed	in	a
UNIQUE	index.
For	a	nonunique	index	in	DB2,	you	can	specify	to	not	index	null	values	by	adding	the	EXCLUDE
NULL	KEYS	option.	This	may	be	particularly	useful	when	you	know	a	majority	of	the	values
may	be	NULL,	so	any	predicate	that	tests	for	IS	NULL	may	do	a	full	table	scan	anyway	instead
of	relying	on	the	index.	Eliminating	null	values	requires	less	space	in	your	database	for	the	index.
Listing	2.2	shows	how.

Listing	2.2	Excluding	null	values	in	a	standard	index	in	DB2

Click	here	to	view	code	image

CREATE	INDEX	CustPhone_IDX
		ON	Customers(CustPhoneNumber)
		EXCLUDE	NULL	KEYS;

DB2	does	not	treat	empty	strings	in	VARCHAR	and	CHAR	columns	as	though	they	are	null	values.
However,	if	you	enable	the	option	in	your	DB2	installation	(Linux,	UNIX,	and	Windows,	or
LUW)	to	run	with	Oracle	compatibility,	storing	an	empty	string	in	a	VARCHAR	column	will	result
in	a	null	value.	See	the	section	“Oracle”	later	in	this	item	for	more	details.

Microsoft	Access
Microsoft	Access	does	index	null	values.	Because	a	primary	key	cannot	contain	null	values,	you
cannot	store	a	NULL	in	a	primary	key	column.	You	can	direct	Access	to	not	store	null	values	in	an
index	when	you	set	the	Ignore	Nulls	property	of	the	index.	Figure	2.1	shows	where	to	do
that	in	the	user	interface	(UI)	to	define	indexes.	The	figure	also	shows	where	you	can	set	the
Unique	and	Primary	properties.



Figure	2.1	The	Primary,	Unique,	and	Ignore	Nulls	options	on	an	index	in	the	UI	of
Access

You	can	also	execute	a	CREATE	INDEX	query	and	set	the	Ignore	Nulls	property	by	using
WITH	IGNORE	NULL.	Listing	2.3	on	the	next	page	shows	the	syntax	to	do	this.

Listing	2.3	Setting	IGNORE	NULL	in	Access	when	creating	an	index	using	SQL

Click	here	to	view	code	image

CREATE	INDEX	CustPhoneIndex
		ON	Customers	(CustPhoneNumber)
		WITH	IGNORE	NULL;

You	can	also	specify	WITH	DISALLOW	NULL	(an	option	not	available	in	the	UI	except	by
setting	the	Required	property	of	the	column	to	Yes)	to	forbid	null	values	in	the	index.
Access	treats	all	null	values	as	not	equal,	so	it	is	possible	to	store	multiple	rows	with	a	NULL	in
a	UNIQUE	indexed	column.	One	quirk	in	Access	is	that	it	discards	all	trailing	blanks	in	any
column	with	a	data	type	of	Text	(which	is	the	same	as	VARCHAR).	If	you	attempt	to	store	an
empty	string	via	the	graphical	interface,	Access	stores	a	NULL.	If	you	try	to	store	an	empty	string
in	a	column	in	a	primary	key,	you	will	get	an	error.
Likewise,	you	will	get	an	error	if	you	try	to	store	an	empty	string	in	a	column	that	has	the
Required	property	set	to	Yes.	You	can	avoid	this	behavior	by	also	setting	the	Allow	Zero
Length	property	of	the	column	to	Yes.	When	you	do	that,	Access	will	not	convert	blank	or
empty	strings	to	NULL,	but	you	have	to	specifically	insert	the	string	in	either	SQL	or	the	user
interface	with	a	pair	of	double	quotes.	When	you	insert	an	empty	string	into	a	column	that	has
Allow	Zero	Length	set	to	Yes,	the	length	of	the	column	value	will	be	0.

Microsoft	SQL	Server
Similar	to	DB2,	SQL	Server	does	index	null	values	and	considers	null	values	to	be	equal.	You
cannot	store	a	NULL	in	any	column	in	a	primary	key,	and	you	can	store	only	one	row	with	a	null
value	in	a	column	in	a	UNIQUE	key.
To	exclude	null	values	from	an	index	in	SQL	Server,	you	must	create	a	filtered	index.	Listing	2.4
shows	an	example.



Listing	2.4	Excluding	null	values	in	a	filtered	index	in	SQL	Server

Click	here	to	view	code	image

CREATE	INDEX	CustPhone_IDX
		ON	Customers(CustPhoneNumber)
		WHERE	CustPhoneNumber	IS	NOT	NULL;

Note	that	if	you	include	an	IS	NULL	predicate	in	a	query	on	the	CustPhoneNumber	column,
SQL	Server	will	not	use	the	filtered	index	to	perform	the	search.	SQL	Server	does	not	convert
empty	VARCHAR	strings	to	NULL.	In	the	example	of	a	filtered	index	shown	in	Listing	2.4,
columns	containing	an	empty	string	will	appear	in	the	index.

MySQL
MySQL	does	not	allow	null	values	in	primary	key	columns.	It	does,	however,	consider	null
values	to	be	unequal	when	creating	an	index,	so	it	is	permissible	to	store	multiple	rows	having	a
column	with	a	null	value	and	a	UNIQUE	index	on	that	column.
MySQL	indexes	null	values,	and	there	is	no	option	to	eliminate	them.	MySQL	uses	an	available
index	for	the	IS	NULL	and	IS	NOT	NULL	predicates.
MySQL	does	not	turn	an	empty	string	into	NULL.	The	length	of	NULL	is	NULL.	The	length	of	an
empty	string	is	0.

Oracle
Oracle	does	not	index	null	values,	and	it	does	not	allow	null	values	in	any	primary	key	columns.
It	indexes	the	value	of	a	compound	key	(a	key	with	multiple	columns)	if	at	least	one	of	the
columns	is	not	NULL.
You	can	force	Oracle	to	provide	an	index	for	null	values	by	either	forcing	it	to	create	a	compound
key	with	a	literal	constant	as	one	of	the	columns	or	using	a	function-based	index	that	can	deal	with
NULL.	Listing	2.5	shows	how	to	force	a	literal	value	into	a	compound	index	with	a	column	that
could	have	null	values.

Listing	2.5	Forcing	Oracle	to	index	null	values	with	an	artificial	compound	key

Click	here	to	view	code	image

CREATE	INDEX	CustPhone_IDX
		ON	Customers	(CustPhoneNumber	ASC,	1);

You	can	also	index	null	values	by	using	the	NVL()	function	to	convert	all	null	values	to
something	else.	Listing	2.6	shows	how.

Listing	2.6	Indexing	null	values	by	converting	them

Click	here	to	view	code	image

CREATE	INDEX	CustPhone_IDX
		ON	Customers	(NVL(CustPhoneNumber,	'unknown'));



The	drawback	to	using	NVL()	to	build	the	index	is	that	you	must	use	the	function	if	you	want	to
test	for	a	null	value,	for	example,	WHERE	NVL(CustPhoneNumber,	'unknown')	=
'unknown'.
Similarly	to	Microsoft	Access,	Oracle	considers	zero-length	VARCHAR	strings	to	be	the	same	as
NULL.	If	you	assign	an	empty	string	to	a	CHAR	column,	it	will	contain	blanks	and	not	be	null.
There	is	no	option	in	Oracle	(as	there	is	in	Access)	to	allow	empty	strings	in	a	column	that	is	the
VARCHAR	data	type.	Like	Microsoft	Access,	Oracle	treats	null	values	as	not	equal,	and	it
considers	zero-length	VARCHAR	strings	to	be	the	same	as	NULL.

PostgreSQL
PostgreSQL	does	not	allow	nulls	within	a	primary	key.	Like	MySQL	and	Microsoft	Access,	it
treats	null	values	as	being	unequal.	Therefore,	you	can	create	a	UNIQUE	index	and	insert	several
null	values	into	the	column	covered	by	the	UNIQUE	index.
PostgreSQL	includes	null	values	in	the	index,	but	you	can	exclude	them	by	defining	a	WHERE
predicate	as	shown	in	Listing	2.7.

Listing	2.7	Excluding	nulls	from	an	index	in	PostgreSQL

Click	here	to	view	code	image

CREATE	INDEX	CustPhone_IDX
		ON	Customers(CustPhoneNumber)
		WHERE	CustPhoneNumber	IS	NOT	NULL;

Similarly	to	SQL	Server,	PostgreSQL	does	not	convert	a	zero-length	string	to	NULL	or	vice	versa
and	considers	the	two	things	to	be	different.

Things	to	Remember
	Consider	whether	a	column	you	want	to	index	will	contain	null	values.
	If	you	want	to	search	for	null	values,	but	the	majority	of	values	in	the	column	are	likely	to
be	NULL,	it	is	better	not	to	index	the	column.	It	may	be	also	an	indication	that	redesign	of
the	table	may	be	warranted.
	When	you	want	to	be	able	to	search	for	values	on	a	column	more	quickly,	but	the	majority
of	the	values	will	be	NULL,	build	the	index	without	null	values	if	your	database	supports	it.
	Every	database	system	supports	null	values	in	indexes	differently.	Be	sure	you	understand
the	options	for	your	database	system	before	considering	building	an	index	on	a	column	that
may	contain	null	values.

Item	11:	Carefully	Consider	Creation	of	Indexes	to	Minimize	Index	and	Data
Scanning
Although	throwing	more	hardware	at	the	problem	can	be	a	way	to	improve	performance,	usually
you	can	get	a	greater	benefit	for	less	money	from	tuning	your	queries.	A	common	problem	is	the
lack	of	indexes	or	having	incorrect	indexes,	which	can	result	in	the	database	engine	having	to



process	more	data	to	find	the	records	that	meet	the	query	criteria.	These	issues	are	known	as
index	scans	and	table	scans.
An	index	scan	or	table	scan	occurs	when	the	database	engine	has	to	scan	the	index	or	data	pages
to	find	the	appropriate	records,	as	opposed	to	a	seek,	where	an	index	is	used	to	pinpoint	the
records	that	are	needed	to	satisfy	the	query.	The	more	data	that	exists,	the	more	time	index	scans
can	take	to	complete.
Consider	the	table	given	in	Listing	2.8.

Listing	2.8	Table	creation	SQL

Click	here	to	view	code	image

CREATE	TABLE	Customers	(
		CustomerID	int	PRIMARY	KEY	NOT	NULL,
		CustFirstName	varchar(25)	NULL,
		CustLastName	varchar(25)	NULL,
		CustStreetAddress	varchar(50)	NULL,
		CustCity	varchar(30)	NULL,
		CustState	varchar(2)	NULL,
		CustZipCode	varchar(10)	NULL,
		CustAreaCode	smallint	NULL,
		CustPhoneNumber	varchar(8)	NULL
);

CREATE	INDEX	CustState	ON	Customers(CustState);

Note	that	we	created	two	indexes	on	the	table.	Because	CustomerID	is	declared	as	PRIMARY
KEY,	an	index	is	created	on	that	column,	and	in	addition	the	CREATE	INDEX	statement	creates
one	on	the	CustPhoneNumber	column.
Now,	if	we	run	the	query	SELECT	*	FROM	Customers	WHERE	CustomerID	=	1,	this
should	do	a	unique	index	seek	of	the	primary	key,	then	enter	the	table	from	the	index	to	return
everything	in	the	Customers	table	for	CustomerID	=	1.
If,	instead,	the	query	was	simply	SELECT	CustomerID	FROM	Customers	WHERE
CustomerID	=	25,	because	all	the	needed	values	are	contained	within	the	index,	there	is	no
need	for	the	second	stage	and	the	query	would	solely	do	a	unique	index	seek	without	consulting
the	table’s	data.
Next,	let’s	examine	the	query	SELECT	*	FROM	Customers	WHERE	CustState	=
'TX'.	Although	we	built	an	index	on	the	CustState	column	in	Listing	2.8,	it	is	not	unique.
This	means	it	is	necessary	to	look	through	the	entire	index	to	try	to	find	all	values	that	match	the
WHERE	condition—an	index	scan.	Because	we	are	selecting	columns	that	are	not	in	the	index,	it
is	also	necessary	to	go	back	to	the	table	data	to	get	those	values.
Finally,	if	the	query	was	SELECT	CustomerID	FROM	Customers	WHERE
CustAreaCode	=	'905',	and	there	is	no	index	on	CustAreaCode,	it	is	necessary	to	do	a
table	scan	to	find	the	value,	because	the	database	engine	has	to	look	at	every	row	to	find	anything
in	the	table	where	CustAreaCode	=	'905'.
There	might	not	seem	to	be	much	difference	between	a	table	scan	and	an	index	scan	in	many



instances,	because	it	is	necessary	to	search	through	all	entries	in	an	object	to	find	a	particular
value.	However,	the	index	is	usually	much	smaller	and	specially	designed	to	be	scanned,	so	it	is
generally	much	faster	to	do	an	index	scan	if	you	want	only	a	small	proportion	of	the	rows	in	the
table.	If	you	want,	say,	33%	of	the	table,	the	index	may	not	provide	any	benefit.	Note	that	this	is
not	a	hard-and-fast	number;	some	database	engines	might	have	a	lower	or	higher	threshold	where
scanning	would	be	faster.
In	fact,	there	are	times	when	a	table	scan	can	provide	better	query	performance.	It	depends,	in
part,	on	the	percentage	of	rows	returned.	For	the	most	part,	though,	you	want	to	have	appropriate
indexes	on	your	tables.	For	an	in-depth	discussion,	refer	to	Item	46,	“Understand	how	the
execution	plan	works.”
There	is	a	risk,	though,	of	assuming	that	indexes	are	the	solution	to	all	data	retrieval	problems.
Many	indexes	do	not	speed	up	retrieval	and	can	actually	slow	down	updates.	A	problem	is	that
whenever	you	update	an	indexed	column,	you	force	an	update	to	one	or	more	“index	tables”—
meaning	more	disk	reads	and	writes.	Because	indexes	are	highly	organized,	making	updates	in
them	is	often	more	expensive	than	the	update	to	the	table.
Operational	tables	typically	see	lots	of	updates,	so	you	should	justify	every	index	on	an
operational	table.	Reporting	databases	(the	information	warehouse)	typically	do	not	see	many
updates,	so	you	should	not	be	shy	about	applying	indexes.	(Such	databases	are	also	good
candidates	for	denormalization,	as	mentioned	in	Item	9,	“Use	denormalization	for	information
warehouses.”)	However,	simply	applying	indexes	is	not	a	panacea.
The	most	common	type	of	index	used	by	various	DBMSs	is	a	B-tree	structure.	Although	various
DBMSs	might	have	additional	types	such	as	hash,	spatial,	or	other	specialized	structures,	B-tree
is	the	most	versatile	and	thus	more	common.	A	full	discussion	of	B-tree	structure	is	beyond	the
scope	of	the	book,	but	as	a	quick	recap,	a	B-tree	structure	starts	with	a	root	node	that	can	point	to
a	number	of	intermediate	nodes,	which	in	turn	point	to	a	number	of	leaf	nodes,	which	then	point	to
the	actual	data.
A	B-tree	index’s	contribution	to	query	performance	depends	significantly	on	its	type.	There	are
two	different	index	methods:	clustered	and	nonclustered.	A	clustered	index	physically	sorts	the
table’s	contents	in	the	order	of	whichever	columns	were	specified	when	the	index	was	created.
Because	it	is	not	possible	to	order	the	rows	in	a	table	in	more	than	one	way,	you	can	have	only
one	clustered	index	per	table.	In	SQL	Server,	at	least,	usually	a	clustered	index	has	leaf	nodes	that
contain	data	directly.	A	nonclustered	index	has	the	same	index	structure	as	a	clustered	index,	but
with	two	important	differences:

	Nonclustered	indexes	may	be	sorted	differently	from	the	table’s	physical	order.
	A	nonclustered	index’s	leaf	level	consists	of	an	index	key	plus	a	bookmark	that	points	to	the
data,	rather	than	containing	the	data.

Note
In	Oracle,	table	data	is	not	sorted	based	on	the	column(s)	specified	in	an	index.	The
optimizer	maintains	metadata	on	how	well	an	index	mirrors	the	table’s	sorting	(its
clustering	factor),	which	influences	its	choice	in	the	execution	plan.



Whether	a	nonclustered	index	access	will	perform	better	than	a	table	scan	depends	on	the	table
size,	the	row’s	storage	pattern,	the	row’s	length,	and	the	percentage	of	rows	the	query	returns.	A
table	scan	often	starts	to	perform	better	than	a	nonclustered	index	access	when	at	least	10%	of	the
rows	are	selected.	A	clustered	index	usually	performs	better	than	a	table	scan	even	when	the
percentage	of	returned	rows	is	high.
Another	important	consideration	is	how	the	data	is	usually	being	accessed.	If	a	column	is	not
typically	included	in	the	WHERE	clause,	there	is	little	benefit	in	having	it	indexed.	As	illustrated
earlier,	if	a	column	has	low	cardinality	(a	large	percentage	of	the	index	entries	all	have	the	same
value),	there	is	little	benefit	in	having	it	indexed.	If	an	index	will	not	result	in	the	database	engine
reading	less	than	a	minimum	percentage	of	the	table,	the	engine	will	not	use	the	index.
In	addition,	an	index	makes	sense	only	if	the	table	is	large.	Most	database	engines	load	small
tables	into	memory.	Once	a	table	is	in	memory,	searching	it	goes	quickly,	no	matter	what	you	do
or	do	not	do.	What	“small”	means	depends	on	the	number	of	rows,	the	size	of	each	row,	how	it
fits	into	a	page,	and	how	much	memory	your	database	server	has	available.
The	combination	of	columns	is	important	as	well.	If	certain	columns	are	typically	included
together	in	most	queries,	an	index	containing	all	of	those	columns	should	be	created.	The	fact	that
each	of	the	columns	is	indexed	individually	does	not	necessarily	mean	that	an	efficient	access
plan	can	be	created.	When	creating	an	index	of	multiple	columns,	the	order	in	which	the	columns
are	specified	in	the	index	is	important.	If	some	queries	look	for	a	specific	value	of
CustLastName,	but	other	queries	look	for	specific	values	of	both	CustFirstName	and
CustLastName,	the	index	should	be	on	CustLastName,	then	CustFirstName	(as	shown
in	Listing	2.9),	not	the	reverse	(as	shown	in	Listing	2.10).

Listing	2.9	Appropriate	index	creation	SQL

Click	here	to	view	code	image

CREATE	INDEX	CustName
		ON	Customers(CustLastName,	CustFirstName);

Listing	2.10	Less	appropriate	index	creation	SQL

Click	here	to	view	code	image

CREATE	INDEX	CustName
		ON	Customers(CustFirstName,	CustLastName);

Things	to	Remember
	Analyze	your	data	so	that	the	appropriate	indexes	are	created	to	improve	performance.
	Ensure	that	the	indexes	you	have	created	are,	in	fact,	going	to	be	used.

Item	12:	Use	Indexes	for	More	than	Just	Filtering
Database	indexes	are	distinct	data	structures	in	the	database.	Each	index	requires	its	own	disk
space,	and	because	it	holds	a	copy	of	the	indexed	table	data,	it	is	pure	redundancy.	However,	this
redundancy	is	acceptable,	because	indexes	improve	the	speed	of	data	retrieval	operations	on	a



table	by	quickly	locating	data	without	having	to	search	every	row	in	the	table	with	each	access.
Note,	though,	that	indexes	are	useful	in	many	other	ways	as	well.
The	WHERE	clause	defines	the	search	condition	of	an	SQL	statement.	As	such,	it	uses	the	core
functional	purpose	of	an	index,	which	is	to	find	data	quickly.	A	poorly	written	WHERE	clause	is
the	first	ingredient	of	a	slow	query.
Whether	or	not	a	column	is	indexed	can	affect	how	efficiently	joins	between	tables	get	executed.
In	essence,	the	JOIN	operation	allows	the	data	from	a	normalized	data	model	to	be	transformed
into	a	denormalized	form	for	a	specific	processing	purpose.	Because	JOIN	operations	combine
data	that	is	scattered	through	many	tables,	thus	needing	more	reads	from	different	pages,	they	are
particularly	sensitive	to	disk	seek	latencies,	so	proper	indexing	can	have	a	great	impact	on
response	times.
Three	common	join	algorithms	are	used	when	querying	(nested	loops,	hash	join,	and	sort-merge
join),	but	all	are	similar	in	that	they	process	only	two	tables	at	a	time.	An	SQL	query	involving
more	tables	requires	multiple	steps.	First,	an	intermediate	result	set	is	built	by	joining	two	tables,
then	that	result	set	is	joined	with	the	next	table,	and	so	forth.
The	nested	loops	join	is	the	most	fundamental	join	algorithm.	Think	of	it	as	two	nested	queries:
the	outer	(driving)	query	fetches	the	results	from	one	table,	and	the	second	query	fetches	the
corresponding	data	from	the	other	table	for	each	row	of	the	driving	query.	Nested	loops	joins,
therefore,	work	best	with	indexes	on	the	columns	being	joined.	Nested	loops	joins	deliver	good
performance	if	the	driving	query	returns	a	small	result	set.	Otherwise,	the	optimizer	will	likely
choose	a	different	join	algorithm.
Hash	joins	load	the	candidate	records	from	one	side	of	the	join	into	a	hash	table	that	can	be
probed	very	quickly	for	each	row	from	the	other	side	of	the	join.	Tuning	a	hash	join	requires	an
entirely	different	indexing	approach	from	the	nested	loops	join.	Because	the	join	is	done	using	the
hash	table,	there	is	no	need	to	index	the	columns	that	are	being	joined.	The	only	indexes	that	can
improve	the	performance	of	a	hash	join	are	on	columns	in	the	WHERE	predicate	or	the	ON
predicate	of	joins;	in	fact,	that	is	the	only	time	when	a	hash	join	uses	an	index.	Realistically,	the
performance	of	hash	joins	is	achieved	by	reducing	the	size	of	the	hash	table	either	horizontally
(fewer	rows)	or	vertically	(fewer	columns).
A	sort-merge	join	requires	that	both	sides	of	the	join	be	sorted	by	the	join	predicates.	It	then
combines	the	two	sorted	lists	like	a	zipper.	In	many	ways,	a	sort-merge	join	is	similar	to	a	hash
join.	Indexing	the	join	predicates	alone	is	useless,	but	there	should	be	an	index	for	the
independent	conditions	to	read	all	candidate	records	in	one	shot.	There	is	one	aspect,	however,
that	is	unique	to	the	sort-merge	join:	the	join	order	does	not	make	any	difference,	not	even	for
performance.	For	the	other	algorithms,	the	direction	of	the	outer	joins	(left	or	right)	implies	the
join	order.	However,	that	is	not	the	case	for	sort-merge	joins.	The	sort-merge	join	can	even	do	a
left	and	right	outer	join	(a	so-called	full	outer	join)	at	the	same	time.	Although	the	sort-merge	join
performs	well	once	the	inputs	are	sorted,	it	is	seldom	used	because	sorting	both	sides	is	very
expensive.	However,	if	there	is	an	index	corresponding	to	the	sort	order,	the	sort	operations	can
be	avoided	entirely,	and	the	sort-merge	join	shines.	Otherwise,	because	the	hash	join	needs	to
preprocess	only	one	side	of	the	join,	it	is	superior	in	many	cases.
To	some	extent,	the	preceding	discussion	of	join	algorithms	is	somewhat	theoretical.	Although	it



is	possible	(at	least	in	SQL	Server	and	Oracle,	using	query	hints)	to	force	the	use	of	a	specific
join	type,	it	is	far	better	to	allow	the	query	optimizer	to	select	the	algorithm	it	feels	is	most
appropriate	given	the	data	as	it	currently	exists,	and	ensure	that	your	indexing	is	appropriate.

Note
It	should	be	pointed	out	that	MySQL	does	not	support	either	hash	joins	or	sort-merge
joins.

Another	way	indexes	can	be	used	is	through	data	clustering.	Clustering	data	means	that	data	that
will	be	accessed	consecutively	is	stored	close	together	so	that	accessing	it	requires	fewer	I/O
operations.	Consider	the	query	shown	in	Listing	2.11.

Listing	2.11	Sample	query	SQL	using	LIKE	in	the	WHERE	clause

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpState	=	'WA'
		AND	EmpCity	LIKE	'%ELLE%';

The	use	of	the	LIKE	expression	with	a	leading	wildcard	for	EmpCity	means	that	a	table	scan	is
necessary,	because	an	index	cannot	be	used.	However,	the	condition	on	EmpState	is	well
suited	for	indexing.	If	the	accessed	rows	are	stored	in	a	single	table	block,	the	table	access	should
not	be	that	significant	an	issue	because	the	database	can	fetch	all	rows	with	a	single	read
operation.	However,	if	the	same	rows	are	spread	across	many	different	blocks,	the	table	access
can	become	a	serious	issue	because	the	database	has	to	fetch	many	blocks	in	order	to	retrieve	all
the	rows.	In	other	words,	the	performance	depends	on	the	physical	distribution	of	the	accessed
rows.
It	is	possible	to	improve	query	performance	by	reordering	the	rows	in	the	table	so	that	they
correspond	to	the	index	order.	Doing	so,	however,	is	rarely	applicable	because	you	can	store	the
table	rows	in	only	one	sequence,	meaning	that	you	can	optimize	the	table	for	one	index	only.
An	index	like	that	shown	in	Listing	2.12,	where	the	first	column	corresponds	to	the	equality	in	the
WHERE	clause,	will	prove	useful.

Listing	2.12	Sample	index	creation	SQL

Click	here	to	view	code	image

CREATE	INDEX	EmpStateName
		ON	Employees	(EmpState,	EmpCity);

If	you	can	eliminate	the	need	to	go	to	the	table	at	all	to	retrieve	data,	the	query	can	be	made	even
more	efficient.	Consider	the	table	illustrated	in	Listing	2.13.

Listing	2.13	Sample	table	creation	SQL



Click	here	to	view	code	image

CREATE	TABLE	Orders	(
		OrderNumber	int	IDENTITY	(1,	1)	NOT	NULL,
		OrderDate	date	NULL,
		ShipDate	date	NULL,
		CustomerID	int	NULL,
		EmployeeID	int	NULL,
		OrderTotal	decimal	NULL
);

If	there	is	a	need	to	produce	order	totals	per	customer,	as	shown	in	Listing	2.14,	the	index	shown
in	Listing	2.15	includes	all	the	needed	columns,	so	the	table	would	not	even	be	accessed.

Listing	2.14	Sample	query	SQL	for	a	totals	query

Click	here	to	view	code	image

SELECT	CustomerID,	Sum(OrderTotal)	AS	SumOrderTotal
FROM	Orders
GROUP	BY	CustomerID;

Listing	2.15	Sample	index	creation	SQL

Click	here	to	view	code	image

CREATE	INDEX	CustOrder
		ON	Orders	(CustomerID,	OrderTotal);

Note
On	some	DBMSs,	a	table	scan	may	still	be	preferred	over	the	index	created	in
Listing	2.15	if	there	is	only	a	small	amount	of	data.

One	thing	to	be	aware	of,	though,	is	that	while	you	would	expect	the	query	in	Listing	2.16	on	the
next	page	to	run	faster	than	the	query	in	Listing	2.14	because	it	involves	fewer	rows,	the	fact	that
the	OrderDate	is	not	in	the	index	means	that	the	likely	choice	is	a	table	scan.

Listing	2.16	Sample	query	SQL	with	a	WHERE	clause

Click	here	to	view	code	image

SELECT	CustomerID,	Sum(OrderTotal)	AS	SumOrderTotal
FROM	Orders
WHERE	OrderDate	>	'2015-12-01'
GROUP	BY	CustomerID;

Indexes	also	have	an	impact	on	the	efficiency	of	ORDER	BY	clauses.	Sorting	is	resource
intensive.	Although	it	typically	is	CPU	intensive,	the	main	problem	is	that	the	database	must
temporarily	buffer	the	results:	all	the	input	must	be	read	before	the	first	output	can	be	produced.
An	index	provides	an	ordered	representation	of	the	indexed	data.	In	fact,	an	index	stores	the	data
in	a	presorted	fashion.	This	allows	us	to	use	indexes	to	avoid	the	sort	operation	to	satisfy	an
ORDER	BY	clause.



Unlike	joins,	which	can	use	“pipelining”	(each	row	from	the	intermediate	result	can	be
immediately	pipelined	to	the	next	JOIN	operation,	so	as	not	to	require	storing	the	intermediate
result	set)	to	reduce	memory	usage,	the	complete	sort	operation	must	be	completed	before	it	can
produce	the	first	output.
Because	an	index,	particularly	a	B-tree	index,	provides	an	ordered	representation	of	the	indexed
data,	we	can	think	of	the	index	as	storing	the	data	in	a	presorted	fashion.	This	means	that	indexes
can	be	used	to	avoid	the	sort	operation	required	to	satisfy	an	ORDER	BY	clause.	In	fact,	not	only
can	an	ordered	index	save	the	sorting	effort,	but	it	is	also	possible	to	return	the	first	results
without	processing	all	input	data,	providing	a	pipelined	effect.	Note	that	in	order	for	this	to
happen,	though,	the	same	index	that	is	used	for	the	WHERE	clause	must	also	cover	the	ORDER	BY
clause.
Be	aware	that	databases	can	read	indexes	in	both	directions.	That	means	that	a	pipelined	ORDER
BY	is	possible	even	if	the	scanned	index	range	is	in	the	exact	opposite	order	specified	by	the
ORDER	BY	clause.	This	does	not	affect	the	index’s	usability	for	the	WHERE	clause.	However,
sort	direction	can	be	significant	in	an	index	containing	more	than	one	column.

Note
MySQL	ignores	ASC	and	DESC	modifiers	in	index	declarations.

Things	to	Remember
	Whether	or	not	columns	in	WHERE	clauses	are	included	in	indexes	has	an	impact	on	the
performance	of	the	query.
	Whether	or	not	columns	in	SELECT	clauses	are	indexed	can	also	affect	the	efficiency	of	the
query.
	Whether	or	not	a	column	is	indexed	can	affect	how	efficiently	joins	between	tables	get
executed.
	Indexes	can	also	have	an	impact	on	the	efficiency	of	ORDER	BY	clauses.
	The	existence	of	multiple	indexes	can	have	an	impact	on	write	operations.

Item	13:	Don’t	Go	Overboard	with	Triggers
Most	RDBMSs	include	the	ability	to	run	triggers	(stored	procedures)	automatically	whenever	a
DELETE,	INSERT,	or	UPDATE	is	performed	on	a	table.	Although	many	developers	use	triggers
in	order	to	prevent	orphaned	records,	using	the	built-in	DRI	shown	in	Item	6,	“Define	foreign
keys	to	protect	referential	integrity,”	is	easier,	and	it	executes	faster	and	more	efficiently.	Triggers
can	also	be	used	to	update	calculated	values,	but	(as	was	pointed	out	in	Item	5,	“Understand	why
storing	calculated	data	is	usually	a	bad	idea”)	there	are	better	ways	to	achieve	that.
You	achieve	DRI	through	the	use	of	constraints.	Constraints	let	you	define	the	way	the	database
engine	automatically	enforces	the	integrity	of	a	database.	They	define	rules	regarding	the	values
allowed	in	columns	and	are	the	standard	mechanism	for	enforcing	integrity.	Using	constraints	is
preferred	to	using	DML	(Data	Manipulation	Language)	triggers,	rules,	and	defaults.	The	query



optimizer	also	uses	constraint	definitions	to	build	high-performance	query	execution	plans.
When	you	have	declared	DRI	for	INSERT,	the	RDBMS	checks	when	inserting	a	new	row	into
the	child	table	whether	the	entered	key	value	exists	in	the	parent	table.	If	it	does	not,	no	insert	is
possible.	It	is	also	possible	to	specify	DRI	actions	on	UPDATE	and	DELETE,	such	as	CASCADE
(forwards	a	change/delete	in	the	parent	table	to	the	child	tables),	NO	ACTION	(if	the	specific
row	is	referenced,	changing	the	key	is	not	allowed),	or	SET	NULL/SET	DEFAULT	(a
changed/deleted	key	in	the	parent	table	results	in	setting	the	child	values	to	NULL	or	to	the	default
value	if	one	is	specified).
The	code	in	Listing	2.17	illustrates	how	to	use	DRI	to	prevent	orphan	records	in	the	child	table	if
the	corresponding	entry	in	the	parent	table	is	deleted.	(In	this	case,	the	relevant	entries	in	the
Order_Details	table	will	be	deleted	when	an	entry	is	deleted	from	the	Orders	table.)

Listing	2.17	Using	DRI	to	prevent	orphan	records	in	the	child	table

Click	here	to	view	code	image

ALTER	TABLE	Order_Details
		ADD	CONSTRAINT	fkOrder	FOREIGN	KEY	(OrderNumber)
				REFERENCES	Orders	(OrderNumber)	ON	DELETE	CASCADE;

The	code	in	Listing	2.18	shows	how	to	create	a	trigger	to	do	the	same	thing.

Listing	2.18	Creating	a	trigger	to	prevent	orphan	records	in	the	child	table

Click	here	to	view	code	image

CREATE	TRIGGER	DelCascadeTrig
		ON	Orders
		FOR	DELETE
AS
		DELETE	Order_Details
		FROM	Order_Details,	deleted
		WHERE	Order_Details.OrderNumber	=	deleted.OrderNumber;

As	mentioned	previously,	the	DRI	approach	executes	faster	and	more	efficiently	than	the	trigger
approach.
As	was	implied	in	Item	5,	triggers	can	also	be	used	to	calculate	values.	For	instance,	Listing	2.19
(for	SQL	Server)	shows	how	the	OrderTotals	column	in	the	Orders	table	from	Item	5	could
be	updated	by	a	trigger	that	runs	anytime	the	Order_Details	table	is	changed.

Note
Listing	2.19	is	for	SQL	Server.	See	https://github.com/TexanInParis/Effective-SQL
for	the	equivalent	for	other	DBMSs.

Listing	2.19	SQL	for	a	sample	trigger	to	maintain	a	computed	value

Click	here	to	view	code	image

https://github.com/TexanInParis/Effective-SQL


CREATE	TRIGGER	updateOrdersOrderTotals
		ON	Orders
		AFTER	INSERT,	DELETE,	UPDATE
AS
BEGIN	UPDATE	Orders
		SET	OrderTotal	=	(
						SELECT	SUM(QuantityOrdered	*	QuotedPrice)
						FROM	Order_Details	OD
						WHERE	OD.OrderNumber	=	Orders.OrderNumber
		)
		WHERE	Orders.OrderNumber	IN(
				SELECT	OrderNumber	FROM	deleted
				UNION
				SELECT	OrderNumber	FROM	inserted
		);
END;

Compare	the	complexity	of	writing	that	code	to	the	simplicity	of	using	a	calculated	column
defined	for	the	Orders	table	(as	illustrated	in	Item	5),	and	couple	that	with	the	fact	that	the
solutions	shown	in	Item	5	are	more	efficient	to	run.
As	with	many	things	in	database	design,	there	are	several	ways	of	achieving	the	same	result.
Although	triggers	are	one	approach	to	maintaining	the	data,	they	may	not	be	the	best.	There	are
times,	of	course,	when	triggers	are	appropriate.	Some	of	those	times	include	the	following:

	Maintenance	of	duplicate	or	derived	data:	Denormalized	databases	generally	introduce
data	redundancy.	You	can	keep	the	data	synchronized	through	triggers.
	Complex	column	constraints:	If	a	column	constraint	depends	on	other	rows	within	the
same	table,	or	rows	in	other	tables,	a	trigger	is	the	best	method	for	that	column	constraint.
	Complex	defaults:	You	can	use	a	trigger	to	generate	default	values	based	on	data	in	other
columns,	rows,	or	tables.
	Inter-database	referential	integrity:	When	related	tables	are	found	in	two	different
databases,	you	can	use	triggers	to	ensure	referential	integrity	across	the	databases.

Note
In	those	cases	where	triggers	are	used,	it	might	be	preferable	to	create	the	triggers	on
views,	not	on	the	table.	This	can	make	things	easier,	because	you	may	not	want
triggers	fired	during	bulk	import/export	operations,	but	need	them	to	fire	when	used
in	an	application.

Note
DBMSs	have	different	restrictions	on	what	is	possible	with	constraints	or	defaults.
For	example,	some	DBMSs	do	not	permit	you	to	create	a	CHECK	constraint	with
subqueries,	necessitating	using	triggers	as	an	alternative.	Check	your	DBMS
documentation	to	determine	if	you	are	able	to	accomplish	what	you	need	without	a
trigger.



Upsizing	from	Microsoft	Access
A	common	question	is	how	to	decide	whether	to	use	DRI	or	triggers	to	enforce	table
relationships	when	upsizing	from	Microsoft	Access.	When	converting	to	Microsoft
SQL	Server,	the	Upsizing	Wizard’s	Export	Table	Attributes	screen	lets	you	choose
between	the	two	options	in	order	to	enforce	referential	integrity.	Which	one	to	use
depends	on	how	you	created	the	table	relationships	in	Access.
DRI	causes	SQL	Server	to	create	its	own	tables	with	the	Access	relationships	and
references.	Unfortunately,	SQL	Server’s	DRI	does	not	support	cascade	update	or
cascade	delete,	so	if	you	choose	DRI,	you	lose	any	update	or	delete	cascading
functionality	you	have	in	Access.
In	Access,	open	the	Relationships	window	(Tools,	Relationships),	click	on	the	line
that	connects	two	tables,	right-click	to	open	the	shortcut	menu,	then	choose	Edit
Relationship	to	open	the	Edit	Relationships	dialog	box.	As	shown	in	Figure	2.2,	the
grid	at	the	top	of	this	box	shows	the	two	tables	in	the	relationship	and	the	related
fields	in	each	table.	Beneath	the	grid	are	three	check	boxes:
	Enforce	Referential	Integrity
	Cascade	Update	Related	Fields
	Cascade	Delete	Related	Records

If	only	Enforce	Referential	Integrity	has	been	enabled,	you	can	use	the	DRI	option	on
the	wizard.	If	either	(or	both)	of	Cascade	Update	Related	Fields	or	Cascade	Delete
Related	Records	has	been	selected	for	any	relationship,	you	must	choose	the
wizard’s	trigger	option.

Figure	2.2	Microsoft	Access	Edit	Relationships	dialog	box

One	issue	is	that	while	Access	allows	cascade	update	and	cascade	delete	on	self-
references	(the	same	table	can	be	at	both	ends	of	the	relationship),	SQL	Server	does
not.	That	means	that	although	the	code	depicted	in	Listing	2.20	is	valid	for	Access,	it
will	raise	an	error	in	SQL	Server.

Listing	2.20	Table	creation	SQL	with	DRI	for	a	self-referencing	relationship



Click	here	to	view	code	image

CREATE	TABLE	OrgChart	(
		employeeID	INTEGER	NOT	NULL	PRIMARY	KEY,
		manager_employeeID	INTEGER
CONSTRAINT	SelfReference	FOREIGN	KEY	(manager_employeeID)
REFERENCES	OrgChart	(employeeID)
ON	DELETE	SET	NULL
ON	UPDATE	CASCADE
);

Note	that	since	Access	2010,	it	has	been	possible	to	have	data	macros,	which	are	the
equivalent	of	triggers	in	SQL	Server.	Should	your	Access	database	use	data	macros,
conversion	to	SQL	Server	triggers	may	be	the	best	alternative.

Things	to	Remember
	Because	performance	is	usually	better	with	DRI	provided	through	the	use	of	constraints	and
with	calculated	columns	using	built-in	features	when	you	create	a	table,	we	recommend	that
constraints	or	the	built-in	features	for	calculated	columns	be	the	default	approach.
	Triggers	are	generally	not	portable:	it	is	difficult	to	create	a	trigger	for	one	DBMS	and
expect	it	to	run	without	modifications	on	another	DBMS.
	Use	triggers	only	when	absolutely	necessary.	If	possible,	ensure	that	the	triggers	are
idempotent.

Item	14:	Consider	Using	a	Filtered	Index	to	Include	or	Exclude	a	Subset	of
Data
You	seldom	want	to	return	all	the	rows	from	the	table(s)	involved	in	your	query,	so	you	add	a
WHERE	clause.	Although	this	ensures	that	fewer	rows	are	returned,	it	does	not	necessarily	reduce
the	amount	of	I/O	done	to	get	the	results.
A	filtered	index	(SQL	Server)	or	partial	index	(PostgreSQL)	is	a	nonclustered	index	that	contains
only	a	subset	of	the	number	of	rows	contained	in	a	table.	They	are	typically	much	smaller	than
traditional	nonclustered	indexes	which	have	a	1:1	ratio	between	the	number	of	rows	in	the	table
and	the	number	of	rows	in	the	index.	So,	a	filtered	index	can	provide	both	performance	and
storage	advantages	because	there	are	fewer	rows	in	the	index,	and	therefore	less	I/O	is	required.
Where	a	DBMS	supports	it,	partitioning	of	a	table	can	also	be	used	in	a	similar	manner	to	the
filtered	index.

Note
Access	(at	least	as	of	2016)	and	MySQL	(at	least	as	of	version	5.6)	do	not	support
filtered	indexes.

Note
Although	neither	Oracle	nor	DB2	supports	filtered	indexes	directly,	there	are	ways
to	emulate	them.1



1.	http://use-the-index-luke.com/sql/where-clause/null/partial-index

Filtered	indexes	are	created	by	adding	a	WHERE	clause	when	you	create	an	index.	The
performance	boost	over	a	traditional	index	can	be	significant	if	you	have	a	value	that	is	frequently
used	in	a	WHERE	clause	but	accounts	for	only	a	small	percentage	of	the	total	values	for	that	table.
Filtered	indexes	are	created	by	adding	a	WHERE	clause.	You	can	define	them	as	restricted	to	only
those	values	that	are	not	NULL	or	only	those	values	that	are	NULL.	(See	Item	10,	“Factor	in	nulls
when	creating	indexes,”	for	more	about	using	null	values	in	indexes.)	It	is	only	possible	to	use
deterministic	functions	in	the	WHERE	clause,	and	you	cannot	use	the	OR	operator.	(See	the	sidebar
“Deterministic	versus	Nondeterministic”	in	Chapter	1,	“Data	Model	Design.”)	SQL	Server	has
some	additional	restrictions:	the	filter	predicate	cannot	reference	a	computed	column,	a	UDT
(user-defined	type)	column,	a	spatial	data	type	column,	or	a	hierarchyID	data	type	column,
and	you	cannot	use	BETWEEN,	NOT	IN,	or	a	CASE	statement.
Note	that	the	column	being	filtered	need	not	be	included	in	the	index.	Consider	a	Products
table	with	a	QuantityOnHand	column.	To	be	able	to	query	only	those	products	that	are
running	low	on	stock,	you	could	create	a	filtered	index	as	shown	in	Listing	2.21.

Listing	2.21	Sample	SQL	to	create	a	filtered	index	on	QuantityOnHand

Click	here	to	view	code	image

CREATE	NONCLUSTERED	INDEX	LowProducts
		ON	Products	(ProductNumber)
		WHERE	QuantityOnHand	<	10;

Another	possible	scenario	is	a	document	management	system.	Typically,	you	would	have	a
DocumentStatus	table	with	a	Status	column	that	contains	values	such	as	Draft,	Reviewed,
Pending	publication,	Published,	Pending	expiration,	and	Expired.	You	may	have	a	requirement	to
follow	up	on	documents	that	are	in	Pending	publication	or	Pending	expiration	status.	Listing	2.22
shows	an	index	that	could	be	created	for	that	purpose.

Listing	2.22	Sample	SQL	to	create	a	filtered	index

Click	here	to	view	code	image

CREATE	NONCLUSTERED	INDEX	PendingDocuments
		ON	DocumentStatus	(DocumentNumber,	Status)
		WHERE	Status	IN	('Pending	publication',	'Pending	expiration');

Note	that	it	is	possible	to	create	multiple	filtered	indexes	on	the	same	column,	as	shown	in	Listing
2.23.

Listing	2.23	Sample	SQL	to	create	multiple	filtered	indexes	on	the	same	column

Click	here	to	view	code	image

CREATE	NONCLUSTERED	INDEX	PendPubDocuments
		ON	DocumentStatus	(DocumentNumber,	Status)
		WHERE	Status	=	'Pending	publication';

http://use-the-index-luke.com/sql/where-clause/null/partial-index


CREATE	NONCLUSTERED	INDEX	PendExpDocuments
		ON	DocumentStatus	(DocumentNumber,	Status)
		WHERE	Status	=	'Pending	expiration';

In	Item	12,	“Use	indexes	for	more	than	just	filtering,”	we	mentioned	that	indexes	can	be	used	to
avoid	the	sort	operation	required	to	satisfy	an	ORDER	BY	clause.	Using	a	filtered	index	can
extend	this	concept.	Consider	a	query	like	the	one	in	Listing	2.24.	The	index	in	Listing	2.25	can
be	used	to	avoid	a	sort	operation.

Listing	2.24	Sample	query	that	requires	a	sort	operation

Click	here	to	view	code	image

SELECT	ProductNumber,	ProductName
FROM	Products
WHERE	CategoryID	IN	(1,	5,	9)
ORDER	BY	ProductName;

Listing	2.25	Sample	SQL	to	create	filtered	indexes	to	eliminate	a	sort

Click	here	to	view	code	image

CREATE	INDEX	SelectProducts
		ON	Products(ProductName,	ProductNumber)
		WHERE	CategoryID	IN	(1,	5,	9);

There	are,	of	course,	limits	to	what	you	can	do	with	a	filtered	or	partial	index.	For	instance,
because	it	is	not	possible	to	use	date	functions	such	as	GETDATE(),	you	cannot	create	a	rolling
date	range;	values	in	the	WHERE	clause	must	be	exact.

Things	to	Remember
	Filtered	indexes	are	useful	to	preserve	space	when	the	index	is	useful	for	only	a	small
fraction	of	the	rows.
	Filtered	indexes	can	be	used	to	implement	unique	constraints	on	a	subset	of	rows	(i.e.,	only
those	WHERE	active	=	'Y').
	Filtered	indexes	can	be	used	to	avoid	a	sort	operation.
	Consider	whether	partitioning	your	table	can	offer	benefits	similar	to	a	filtered	index
without	the	overhead	of	maintaining	another	index.

Item	15:	Use	Declarative	Constraints	Instead	of	Programming	Checks
We	cannot	overstate	the	importance	of	enforcing	data	integrity	in	your	database.	It	is	necessary	to
identify	valid	values	for	each	field	and	to	decide	how	to	enforce	the	integrity	of	the	data	in	those
fields	in	order	to	have	a	properly	functioning	database.	Fortunately,	SQL	provides	a	number	of
different	constraints	that	can	help	in	this	area.
SQL	constraints	provide	a	way	to	specify	rules	for	the	data	in	a	table.	For	any	data	action
(INSERT,	DELETE,	UPDATE),	all	constraints	are	checked.	If	there	are	any	violations	of	those
constraints,	the	action	is	aborted.



The	following	six	constraints	exist:
1.	NOT	NULL:	By	default,	a	table	column	can	hold	null	values.	A	NOT	NULL	constraint
ensures	that	a	field	must	always	contain	a	value	by	not	allowing	it	to	accept	null	values.

2.	UNIQUE:	A	UNIQUE	constraint	ensures	that	no	duplicate	values	can	be	entered	in	the
specified	field.	You	can	use	UNIQUE	constraints	to	make	sure	that	no	duplicate	values	are
entered	in	specific	columns	that	do	not	participate	in	a	primary	key.	Unlike	PRIMARY	KEY
constraints,	UNIQUE	constraints	allow	null	values.

3.	PRIMARY	KEY:	Similar	to	the	UNIQUE	constraint,	a	PRIMARY	KEY	constraint	uniquely
identifies	each	record	in	a	database	table.	In	addition	to	containing	unique	values,	a
PRIMARY	KEY	cannot	contain	null	values.	Multiple	UNIQUE	constraints	can	be	defined
on	a	table,	whereas	only	one	PRIMARY	KEY	constraint	can	be	defined	on	a	table.	(See
Item	1,	“Verify	that	all	tables	have	a	primary	key.”)

4.	FOREIGN	KEY:	A	foreign	key	in	one	table	points	to	a	primary	key	in	another	table.	(See
Item	6,	“Define	foreign	keys	to	protect	referential	integrity.”)

5.	CHECK:	CHECK	constraints	can	be	defined	on	a	single	field	or	on	a	table.	When	a	CHECK
constraint	is	defined	on	a	single	field,	only	specified	values	can	be	stored	in	that	field.
When	it	is	defined	on	a	table,	the	values	in	certain	fields	can	be	limited	based	on	values	in
other	fields	in	the	same	row.

6.	DEFAULT:	A	DEFAULT	clause	is	used	to	define	a	default	value	for	a	field.	If	no	other
value	is	specified	when	adding	a	new	record,	the	database	system	uses	the	default	value.

Note
Technically,	a	DEFAULT	clause	is	not	a	constraint	according	to	the	definitions	in	the
SQL	Standard.	However,	it	can	be	used	as	a	means	to	enforce	business	rules,	often	in
conjunction	with	the	NOT	NULL	constraint.

Note
SQL	Server	allows	only	one	null	value	per	column	in	UNIQUE	index	constraints.
DB2	allows	one	null	value	per	column	in	UNIQUE	index	constraints	unless	you
include	a	WHERE	NOT	NULL	filter.

Constraints	can	be	specified	when	the	table	is	created	(as	part	of	a	CREATE	TABLE	statement)
or	after	the	table	is	created	(as	part	of	an	ALTER	TABLE	statement).
To	be	sure,	there	are	other	methods	of	enforcing	referential	integrity	than	the	DRI	provided
through	the	use	of	constraints.	It	can	be	enforced	through	procedural	referential	integrity,	where
rules	are	checked	using	procedural	code.	There	are	several	mechanisms	that	implement
procedural	referential	integrity:

	Code	in	the	client	application
	Stored	procedures



	Triggers
When	developing	computer	systems	to	work	with	the	data,	it	is	certainly	possible	to	include
program	code	that	will	ensure	that	all	of	the	rules	associated	with	the	database	are	enforced.
However,	this	is	not	a	good	idea.	Enforcing	and	maintaining	business	rules	and	relationships	in
the	data	is	part	of	the	data	model,	and	the	responsibility	belongs	to	the	database,	not	the
application	program.	Data	rules	should	be	separated	from	the	applications	in	order	to	ensure	that
everyone	is	working	with	the	same	data	and	that	updates	are	done	one	way.	This	eliminates	the
need	to	write	and	maintain	thousands	of	lines	of	the	same	code	over	and	over.	Sure,	it	is	possible
to	subvert	data	integrity,	but	when	it	is	defined	as	part	of	the	database	itself,	you	have	to	try	very
hard	to	do	it!
The	inclusion	of	stored	procedures	to	enforce	integrity	at	least	keeps	the	rules	in	the	database,	but
it	can	be	a	much	more	difficult	approach,	especially	for	updates.	Also,	although	the	stored
procedures	can	enforce	the	rules,	it	is	necessary	to	ensure	that	users	modify	the	data	only	through
the	stored	procedures.	This	can	be	accomplished	by	granting	users	permission	to	execute	the
stored	procedures	but	not	allowing	them	to	update	the	underlying	tables	directly,	but	that	is	an
additional	level	of	work	that	must	be	done.
Triggers	can	be	used	to	enforce	referential	integrity	and	cascading	actions,	and	it	is	a	self-
contained	solution	that	can	use	the	same	INSERT,	UPDATE,	and	DELETE	statements	to	modify
the	base	tables	as	you	would	normally	use.	However,	Item	13,	“Don’t	go	overboard	with
triggers,”	has	already	discussed	some	of	the	liabilities	of	using	triggers.

Things	to	Remember
	Consider	using	constraints	to	enforce	data	integrity.
	The	query	optimizer	can	use	constraint	definitions	to	build	high-performance	query
execution	plans.

Item	16:	Know	Which	SQL	Dialect	Your	Product	Uses	and	Write	Accordingly
SQL	is	generally	considered	to	be	the	standard	language	for	accessing	databases.	But	even	though
SQL	became	a	standard	of	the	American	National	Standards	Institute	(ANSI)	in	1986,	and	of	the
International	Organization	for	Standardization	(ISO)	in	1987,	specific	SQL	implementations	do
not	necessarily	completely	follow	standards	and	are	generally	incompatible	between	vendors.
Such	details	as	date	and	time	syntax,	string	concatenation,	the	handling	of	nulls,	and	comparison
case	sensitivity	vary	from	vendor	to	vendor.	It	is	important	that	you	understand	what	specific
dialect	of	SQL	your	DBMS	uses	in	order	to	write	effective	SQL	statements.
We	will	attempt	to	list	some	examples	of	differences	in	implementation	in	this	item.	For	more
information,	Troels	Arvin,	a	Danish	database	administrator,	maintains	a	page	comparing	different
SQL	implementations	at	http://troels.arvin.dk/db/rdbms/	that	does	a	good	job	of	highlighting
differences.

Ordering	Result	Sets
The	SQL	Standard	does	not	actually	specify	how	nulls	should	be	ordered	in	comparison	with	non-
null	values,	except
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	Any	two	nulls	are	to	be	considered	equally	ordered.
	Nulls	should	sort	either	above	or	below	all	non-null	values.

It	should	come	as	no	surprise,	then,	that	there	is	no	consistency	among	the	DBMSs!
	IBM	DB2:	Nulls	are	considered	higher	than	any	non-null	value.
	Microsoft	Access:	Nulls	are	considered	lower	than	any	non-null	value.
	Microsoft	SQL	Server:	Nulls	are	considered	lower	than	any	non-null	value.
	MySQL:	Nulls	are	considered	lower	than	any	non-null	value,	although	Troels	Arvin	says
there	is	an	undocumented	feature	in	MySQL	whereby	this	is	not	the	case	if	a	–	(minus)
character	is	added	before	the	column	name	and	ASC	is	changed	to	DESC,	or	DESC	to	ASC.
	Oracle:	By	default,	nulls	are	considered	higher	than	any	non-null	value;	however,	this
sorting	behavior	may	be	changed	by	adding	NULLS	FIRST	or	NULLS	LAST	to	the
ORDER	BY	expression.
	PostgreSQL:	By	default,	nulls	are	considered	higher	than	any	non-null	value;	however
(since	version	8.3),	this	sorting	behavior	may	be	changed	by	adding	NULLS	FIRST	or
NULLS	LAST	to	the	ORDER	BY	expression.

Limiting	Result	Sets
The	SQL	Standard	provides	three	ways	of	limiting	the	number	of	rows	returned:

	Using	FETCH	FIRST
	Using	a	window	function,	one	of	which	is	ROW_NUMBER()	OVER
	Using	a	cursor

Note
What	is	being	referred	to	here	is	a	“simple	limit,”	getting	only	n	rows	in	the	result
set.	This	is	not	the	same	as	a	top-n	query.

Here	is	how	this	is	implemented	in	various	DBMSs:
	IBM	DB2:	Supports	all	standards-based	approaches.
	Microsoft	Access:	Does	not	support	any	standards-based	approaches.
	Microsoft	SQL	Server:	Supports	ROW_NUMBER()	and	cursor	standards-based
approaches.
	MySQL:	Provides	the	LIMIT	operator	as	an	alternative	solution	and	cursor	standards-
based	approaches.
	Oracle:	Supports	ROW_NUMBER()	and	cursor	standards-based	approaches	as	well	as	the
ROWNUM	pseudo	column.
	PostgreSQL:	Supports	all	standards-based	approaches.

The	BOOLEAN	Data	Type



The	SQL	Standard	treats	the	BOOLEAN	data	type	as	optional	but	says	that	a	BOOLEAN	may	be
one	of	the	following	literals:

	TRUE
	FALSE
	UNKNOWN	or	NULL	(unless	prohibited	by	a	NOT	NULL	constraint)

The	DBMS	may	interpret	NULL	as	equivalent	to	UNKNOWN.	(It	is	unclear	from	the	specification
if	the	DBMS	must	support	UNKNOWN,	NULL,	or	both	as	Boolean	literals.)	It	is	defined	that	TRUE
>	FALSE	(true	is	larger	than	false).
Here	is	how	this	is	implemented	in	various	DBMSs:

	IBM	DB2:	Does	not	support	the	BOOLEAN	type.
	Microsoft	Access:	Offers	a	non-nullable	Yes/No	type.
	Microsoft	SQL	Server:	Does	not	support	the	BOOLEAN	type.	The	BIT	type	(which	may
have	0,	1,	or	NULL	as	a	value)	is	a	possible	alternative.
	MySQL:	Offers	a	nonconforming	BOOLEAN	type	(it	is	one	of	many	aliases	to	its
TINYINT(1)	type).
	Oracle:	Does	not	support	the	BOOLEAN	type.
	PostgreSQL:	Follows	the	standard.	Accepts	NULL	as	a	Boolean	literal;	does	not	accept
UNKNOWN	as	a	Boolean	literal.

SQL	Functions
This	is	one	of	the	biggest	areas	for	differences.	Space	does	not	permit	an	adequate	discussion	of
which	functions	the	SQL	Standard	specifies	and	which	functions	are	actually	implemented.	(Note
that	many	DBMSs	have	functions	that	are	not	part	of	the	standard	in	addition	to	whether	or	not
they	implement	specified	functions!)	Troels	Arvin’s	site	discusses	some	of	the	standard	functions
and	their	implementation,	but	you	are	best	off	reading	the	documentation	for	whatever	you	use.
Note	that	we	do	provide	an	overview	of	the	functions	related	to	the	date	and	time	data	types	in
the	Appendix,	“Date	and	Time	Types,	Operations,	and	Functions.”

The	UNIQUE	Constraint
The	SQL	Standard	states	that	a	column	(or	set	of	columns)	that	is	subject	to	a	UNIQUE	constraint
must	also	be	subject	to	a	NOT	NULL	constraint,	unless	the	DBMS	implements	an	optional	“nulls
allowed”	feature.	The	optional	feature	adds	some	characteristics	to	the	UNIQUE	constraint:

	Columns	involved	in	a	UNIQUE	constraint	may	also	have	NOT	NULL	constraints,	but	they
do	not	have	to.
	If	columns	with	UNIQUE	constraints	do	not	also	have	NOT	NULL	constraints,	the	columns
may	contain	any	number	of	null	values	(a	logical	consequence	of	the	fact	that
NULL<>NULL).

Here	is	how	this	is	implemented	in	various	DBMSs:



	IBM	DB2:	Follows	the	nonoptional	parts	of	the	UNIQUE	constraint.	It	does	not	implement
the	optional	“nulls	allowed”	feature.
	Microsoft	Access:	Follows	the	standard.
	Microsoft	SQL	Server:	Offers	the	“nulls	allowed”	feature,	but	allows	at	most	one	instance
of	a	null	value	(i.e.,	breaks	the	second	characteristic	of	the	standard).
	MySQL:	Follows	the	standard,	including	the	optional	“nulls	allowed”	feature.
	Oracle:	Offers	the	“nulls	allowed”	feature.	If	the	UNIQUE	constraint	is	imposed	on	a
single	column,	the	column	may	contain	any	number	of	nulls	(as	expected	from	the	second
characteristic	of	the	standard).	However,	if	the	UNIQUE	constraint	is	specified	for	multiple
columns,	Oracle	sees	the	constraint	as	violated	if	any	two	rows	contain	at	least	one	NULL
in	a	column	and	identical,	non-null	values	in	the	rest	of	the	columns.
	PostgreSQL:	Follows	the	standard,	including	the	optional	“nulls	allowed”	feature.

Things	to	Remember
	Even	though	a	statement	may	be	compliant	with	the	SQL	Standards,	it	may	not	work	with
your	DBMS.
	Because	different	DBMSs	implement	things	differently,	they	have	different	performance
trade-offs	for	the	same	SQL	statements.
	Always	consult	the	documentation	for	your	DBMS.
	Check	http://troels.arvin.dk/db/rdbms/	to	see	additional	differences	that	may	exist.

Item	17:	Know	When	to	Use	Calculated	Results	in	Indexes
We	wrote	about	using	functions	rather	than	storing	calculated	columns	in	Item	11,	“Carefully
consider	creation	of	indexes	to	minimize	index	and	data	scanning.”	It	turns	out	that	it	is	possible
to	index	function-based	calculated	columns,	so	you	may	not	be	penalized	as	much	as	you	might
have	thought.
DB2	has	supported	function-based	indexes	in	zOS	versions	since	version	9,	but	only	since
version	10.5	on	LUW.	However,	user-defined	functions	cannot	be	used	in	indexes.	One	solution	is
to	create	a	real	column	in	the	table	to	hold	the	result	of	the	function	or	expression	(which	must	be
maintained	via	a	trigger	or	by	the	application	layer)	and	index	that	column.	That	new	column	can
be	indexed,	and	the	WHERE	clause	can	use	the	new	column	(without	the	expression).
MySQL	has	been	able	to	create	indexes	on	generated	columns	since	version	5.7.	Older	versions
must	use	the	same	approach	as	outlined	for	DB2.
Oracle	has	supported	function-based	indexes	since	release	8i,	and	virtual	columns	were	added	in
release	11g.
PostgreSQL	has	fully	supported	indexes	on	expressions	since	release	7.4	and	partially	supported
them	since	release	7.2.
SQL	Server	has	allowed	computed	columns	to	be	indexed	since	release	2000.	It	is	possible	to
index	a	calculated	column	as	long	as	the	following	conditions	are	met:

	Ownership	requirements:	All	function	references	in	the	computed	column	must	have	the
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same	owner	as	the	table.
	Determinism	requirements:	The	computed	column	must	be	deterministic.	(See	the	sidebar
“Deterministic	versus	Nondeterministic”	in	Chapter	1,	“Data	Model	Design.”)
	Precision	requirements:	The	function	cannot	be	an	expression	of	the	float	or	real	data
types	and	cannot	use	a	float	or	real	data	type	in	its	definition.
	Data	type	requirements:	The	function	cannot	resolve	to	text,	ntext,	or	image.
	SET	option	requirements:	The	ANSI_NULLS	connection-level	option	must	be	set	to	ON
when	the	CREATE	TABLE	or	ALTER	TABLE	statement	that	defines	the	computed	column
is	executed.

One	very	common	reason	for	wanting	to	have	an	index	based	on	a	function	is	to	allow	case-
insensitive	queries.	SQL	Server,	MySQL,	and	Microsoft	Access	are	case	insensitive	by	default.
(MySQL	is	also	accent	insensitive	by	default.)	Consider	the	query	shown	in	Listing	2.26.

Listing	2.26	Sample	SQL	for	case-insensitive	RDBMSs

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpLastName	=	'Viescas';

Regardless	of	whether	the	name	has	been	stored	as	viescas,	VIESCAS,	Viescas,	or	even
ViEsCaS,	SQL	Server,	MySQL,	and	Access	will	find	the	employee(s).	Other	DBMSs,	though,
will	find	the	employee	only	if	the	name	has	been	stored	exactly	as	Viescas.	To	retrieve	the	other
variations	requires	a	query	like	that	shown	in	Listing	2.27.

Listing	2.27	Sample	SQL	for	case-sensitive	RDBMSs

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	UPPER(EmpLastName)	=	'VIESCAS';

The	fact	that	there	is	a	function	in	the	WHERE	clause	working	on	a	column	in	the	table	means	that
the	query	is	not	sargable	(see	Item	28,	“Write	sargable	queries	to	ensure	that	the	engine	will	use
indexes”),	and	so	a	table	scan	will	be	performed,	because	the	function	needs	to	be	applied	to
every	row	in	the	table.
If,	however,	we	create	the	index	illustrated	in	Listing	2.28,	the	query	shown	in	Listing	2.27	will,
in	fact,	use	that	index.

Listing	2.28	SQL	to	create	an	index	for	case-sensitive	RDBMSs

Click	here	to	view	code	image

CREATE	INDEX	EmpLastNameUpper
		ON	Employees	(UPPER(EmpLastName));



With	DB2,	Oracle,	PostregSQL,	and	SQL	Server,	function-based	indexing	is	not	limited	to	built-
in	functions	like	UPPER().	It	is	possible	to	use	expressions	such	as	Column1	+	Column2
and	even	user-defined	functions	in	the	index	definition.

Note
In	SQL	Server,	you	cannot	simply	create	an	index	based	on	a	function.	You	must	add
a	computed	field	to	the	table,	then	index	that	computed	field.

There	is	an	important	limitation	with	user-defined	functions,	though.	The	function	must	be
deterministic.	(See	the	sidebar	“Deterministic	versus	Nondeterministic”	in	Chapter	1,	“Data
Model	Design.”)	For	instance,	it	is	not	possible	to	refer	to	the	current	time	(either	directly	or
indirectly)	in	the	function	and	then	use	that	function	to	create	an	index.	Let’s	assume	that	you	want
to	be	able	to	extract	employees	based	on	their	age,	so	you	create	a	function	like	that	shown	in
Listing	2.29	which	uses	the	current	date	(SYSDATE())	to	calculate	the	age	based	on	the	supplied
date	of	birth.

Listing	2.29	Nondeterministic	function

Click	here	to	view	code	image

CREATE	FUNCTION	CalculateAge(Date_of_Birth	DATE)
		RETURNS	NUMBER
AS
BEGIN
		RETURN
				TRUNC((SYSDATE()	-	Date_of_Birth)	/	365);
END

Note
The	CalculateAge()	function	in	Listing	2.29	is	valid	for	Oracle.	SQL	Server
would	use	DATEDIFF("d",	Date_Of_Birth,	Date)	/	365.	DB2	would
require	something	like	TRUNC((DAYS(CURRENT_DATE)	-
DAYS(date_of_birth))	/	365,	0),	and	MySQL	would	require
TRUNCATE(DATEDIFF(SYSDATE,	date_of_birth)	/	365).	Access
does	not	allow	the	creation	of	functions	using	SQL.	You	need	to	use	VBA	instead.
Note	that	the	function	does	not	calculate	age	correctly.	You	can	find	an	example	that
calculates	age	correctly	using	CASE	in	Item	24,	“Know	when	to	use	CASE	to	solve	a
problem.”

Listing	2.30	illustrates	how	it	is	possible	to	use	the	CalculateAge()	function	to	find	those
employees	who	are	over	50	years	of	age.

Listing	2.30	SQL	statement	using	the	CalculateAge()	function

Click	here	to	view	code	image



SELECT	EmployeeID,	EmpFirstName,	EmpLastName,
		CalculateAge(EmpDOB)	AS	EmpAge
FROM	Employees
WHERE	CalculateAge(EmpDOB)	>	50;

Because	the	function	is	used	in	the	WHERE	clause	and	will	cause	a	table	scan	as	is,	it	would	seem
obvious	that	you	should	create	a	function-based	index	in	order	to	optimize	the	query.
Unfortunately,	CalculateAge()	is	nondeterministic,	because	the	result	of	the	function	call	is
not	fully	determined	by	its	parameters:	the	result	of	the	CalculateAge()	function	depends	on
the	value	returned	by	the	SYSDATE()	function.	Only	deterministic	functions	can	be	indexed.
PostgreSQL	and	Oracle	require	that	the	keyword	DETERMINISTIC	(Oracle)	or	IMMUTABLE
(PostgreSQL)	be	used	when	defining	the	function.	Both	trust	the	developer	to	have	declared	the
function	correctly,	so	you	could	declare	the	CalculateAge()	function	to	be	deterministic	and
use	it	in	an	index	definition.	However,	it	will	not	work	as	intended	because	the	age	stored	in	the
index	is	calculated	when	the	index	is	created	and	does	not	change	as	the	date	changes.
Because	function-based	indexing	would	appear	to	provide	much	benefit	for	query	optimization,
there	is	a	tendency	to	go	overboard	and	index	everything.	This	is	not	a	good	idea!	Every	index
requires	ongoing	maintenance.	The	more	indexes	on	a	table,	the	slower	updates	to	that	table	will
be.	Function-based	indexes	are	particularly	troublesome	because	they	make	it	very	easy	to	create
redundant	indexes.

Things	to	Remember
	Do	not	go	overboard	with	your	indexes.
	Analyze	the	expected	database	usage	to	ensure	that	filtered	indexes	are	used	only	where
they	truly	make	sense.



3.	When	You	Can’t	Change	the	Design

You	have	spent	considerable	time	ensuring	that	you	have	a	proper	logical	data	model	for	your
situation.	You	have	worked	hard	to	ensure	that	it	has	been	implemented	as	an	appropriate	physical
model.	Unfortunately,	you	find	that	some	of	your	data	must	come	from	a	source	outside	your
control.
This	does	not	mean	that	you	are	doomed	to	have	SQL	queries	that	will	not	perform	well.	The
items	in	this	chapter	are	intended	to	help	you	understand	some	options	you	have	to	be	able	to
work	with	that	inappropriately	designed	data	from	other	sources.	We	will	consider	both	the	case
when	you	can	create	objects	to	hold	the	transformations	and	the	case	when	you	must	perform	the
transformation	as	part	of	the	query	itself.
Because	you	do	not	have	control	over	the	external	data,	there	is	nothing	you	can	do	to	change	the
design.	However,	you	can	use	the	information	in	the	items	in	this	chapter	to	work	with	the	DBAs
and	still	end	up	with	effective	SQL.

Item	18:	Use	Views	to	Simplify	What	Cannot	Be	Changed
Views	are	simply	a	composition	of	a	table	in	the	form	of	a	predefined	SQL	query	on	one	or	many
tables	or	other	views.	Although	they	are	simple,	there	is	much	merit	to	their	use.

Note
Microsoft	Access	does	not	actually	have	an	object	called	a	view,	but	saved	queries
in	Access	can	be	thought	of	as	views.

You	can	use	views	to	ameliorate	some	denormalization	issues.	You	have	already	seen	the
denormalized	CustomerSales	table	in	Item	2,	“Eliminate	redundant	storage	of	data	items,”
and	how	it	should	have	been	modeled	as	four	separate	tables	(Customers,
AutomobileModels,	SalesTransactions,	and	Employees).	You’ve	also	seen	the
Assignments	table	with	repeating	groups	in	Item	3,	“Get	rid	of	repeating	groups,”	that	should
have	been	modeled	as	two	separate	tables	(Drawings	and	Predecessors).	While	working
to	fix	such	problems,	you	could	use	views	to	represent	how	the	data	should	appear.
You	can	create	different	views	of	CustomerSales	as	shown	in	Listing	3.1.

Listing	3.1	Views	to	normalize	a	denormalized	table

Click	here	to	view	code	image

CREATE	VIEW	vCustomers	AS
SELECT	DISTINCT	cs.CustFirstName,	cs.CustLastName,	cs.Address,
		cs.City,	cs.Phone
FROM	CustomerSales	AS	cs;

CREATE	VIEW	vAutomobileModels	AS
SELECT	DISTINCT	cs.ModelYear,	cs.Model
FROM	CustomerSales	AS	cs;



CREATE	VIEW	vEmployees	AS
SELECT	DISTINCT	cs.SalesPerson
FROM	CustomerSales	AS	cs;

As	Figure	3.1	shows,	vCustomers	would	still	include	two	entries	for	Tom	Frank	because	two
different	addresses	were	listed	in	the	original	table.	However,	you	have	a	smaller	set	of	data	to
work	with.	By	sorting	the	data	on	CustFirstName	and	CustLastName,	you	should	be	able
to	see	the	duplicate	entry,	and	you	can	correct	the	data	in	the	CustomerSales	table.

Figure	3.1	Data	for	view	vCustomers

You	saw	in	Item	3	how	to	use	a	UNION	query	to	“normalize”	a	table	that	contains	repeating
groups.	You	can	use	views	to	do	the	same	thing,	as	shown	in	Listing	3.2.

Listing	3.2	Views	to	normalize	a	table	with	repeating	groups

Click	here	to	view	code	image

CREATE	VIEW	vDrawings	AS
SELECT	a.ID	AS	DrawingID,	a.DrawingNumber
FROM	Assignments	AS	a;

CREATE	VIEW	vPredecessors	AS
SELECT	1	AS	PredecessorID,	a.ID	AS	DrawingID,
		a.Predecessor_1	AS	Predecessor
FROM	Assignments	AS	a
WHERE	a.Predecessor_1	IS	NOT	NULL
UNION
SELECT	2,	a.ID,	a.Predecessor_2
FROM	Assignments	AS	a
WHERE	a.Predecessor_2	IS	NOT	NULL
UNION
SELECT	3,	a.ID,	a.Predecessor_3
FROM	Assignments	AS	a
WHERE	a.Predecessor_3	IS	NOT	NULL
UNION
SELECT	4,	a.ID,	a.Predecessor_4
FROM	Assignments	AS	a
WHERE	a.Predecessor_4	IS	NOT	NULL
UNION
SELECT	5,	a.ID,	a.Predecessor_5
FROM	Assignments	AS	a
WHERE	a.Predecessor_5	IS	NOT	NULL;

One	point	that	needs	to	be	mentioned	is	that	although	all	the	views	shown	previously	mimic	what
the	proper	table	design	should	be,	they	can	be	used	only	for	reporting	purposes.	Because	of	the



use	of	SELECT	DISTINCT	in	the	views	in	Listing	3.1,	and	the	use	of	UNION	in	Listing	3.2,	the
views	are	not	updatable.	Some	vendors	allow	you	to	work	around	this	limitation	by	defining
triggers	on	views	(also	known	as	INSTEAD	OF	triggers)	so	that	you	can	write	the	logic	for
applying	modifications	made	via	the	view	to	the	underlying	base	table	yourself.

Note
DB2,	Oracle,	PostgreSQL,	and	SQL	Server	allow	triggers	on	views.	MySQL	does
not.

Some	other	reasons	to	use	views	include	the	following:
	To	focus	on	specific	data:	You	can	use	views	to	focus	on	specific	data	and	on	specific
tasks.	The	view	can	return	all	rows	of	a	table	or	tables,	or	a	WHERE	clause	can	be	included
to	limit	the	rows	returned.	The	view	can	also	return	only	a	subset	of	the	columns	in	one	or
more	tables.
	To	simplify	or	clarify	column	names:	You	can	use	views	to	provide	aliases	on	column
names	so	that	they	are	more	meaningful.
	To	bring	data	together	from	different	tables:	You	can	use	views	to	combine	multiple
tables	into	a	single	logical	record.
	To	simplify	data	manipulation:	Views	can	simplify	how	users	work	with	data.	For
example,	assume	you	have	a	complex	query	that	is	used	for	reporting	purposes.	Rather	than
make	each	user	define	the	subqueries,	outer	joins,	and	aggregation	to	retrieve	data	from	a
group	of	tables,	create	a	view.	Not	only	does	the	view	simplify	access	to	the	data	(because
the	underlying	query	does	not	have	to	be	written	each	time	a	report	is	being	produced),	but
it	ensures	consistency	by	not	forcing	each	user	to	create	the	query.	You	can	also	create
inline	user-defined	functions	that	logically	operate	as	parameterized	views,	or	views	that
have	parameters	in	WHERE	clause	search	conditions	or	other	parts	of	the	query.	Note	that
inline	table-valued	functions	are	not	the	same	as	scalar	functions!
	To	protect	sensitive	data:	When	the	table	contains	sensitive	data,	that	data	can	be	left	out
of	the	view.	For	instance,	rather	than	reveal	customer	credit	card	information,	you	can
create	a	view	that	uses	a	function	to	“munge”	the	credit	card	numbers	so	that	users	are	not
aware	of	the	actual	numbers.	Depending	on	the	DBMS,	only	the	view	would	be	made
accessible	to	users,	and	the	underlying	tables	need	not	be	directly	accessible.	Views	can	be
used	to	provide	both	column-level	and	row-level	security.	Note	that	a	WITH	CHECK
OPTION	clause	is	necessary	to	protect	the	data	integrity	by	preventing	users	from
performing	updates	or	deletes	that	go	beyond	the	constraints	imposed	by	the	view.
	To	provide	backward	compatibility:	Should	changes	be	required	to	the	schemas	for	one	or
more	of	the	tables,	you	can	create	views	that	are	the	same	as	the	old	table	schemas.
Applications	that	used	to	query	the	old	tables	can	now	use	the	views,	so	that	the	application
does	not	have	to	be	changed,	especially	if	it	is	only	reading	data.	Even	applications	that
update	data	can	sometimes	still	use	a	view	if	INSTEAD	OF	triggers	are	added	to	the	new
view	to	map	INSERT,	DELETE,	and	UPDATE	operations	on	the	view	to	the	underlying



tables.
	To	customize	data:	You	can	create	views	so	that	different	users	can	see	the	same	data	in
different	ways,	even	when	they	are	using	the	same	data	at	the	same	time.	For	example,	you
can	create	a	view	that	retrieves	only	the	data	for	those	customers	of	interest	to	a	specific
user	based	on	that	user’s	login	ID.
	To	provide	summarizations:	Views	can	use	aggregate	functions	(SUM(),	AVERAGE(),
etc.)	and	present	the	calculated	results	as	part	of	the	data.
	To	export	and	import	data:	You	can	use	views	to	export	data	to	other	applications.	You
can	create	a	view	that	gives	you	only	the	desired	data,	and	then	use	an	appropriate	data
utility	to	export	just	that	data.	You	can	also	use	views	for	import	purposes	when	the	source
data	does	not	contain	all	columns	in	the	underlying	table.

Do	Not	Create	Views	on	Views
It	is	permissible	to	create	a	view	that	references	another	view(s).	Those	coming
from	a	programming	background	might	be	tempted	to	treat	a	view	the	way	they
would	treat	a	procedure	in	an	imperative	programming	language.	That	is	actually	a
big	mistake	and	will	cause	more	performance	and	maintenance	problems,	likely
offsetting	any	savings	gained	from	having	a	generic	view	that	is	then	used	as	a	base
for	other	views.	Listing	3.3	demonstrates	an	example	of	creating	views	on	other
views.

Listing	3.3	Three	view	definitions

Click	here	to	view	code	image

CREATE	VIEW	vActiveCustomers	AS
SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
		c.CustFirstName	+	'	'	+	c.CustLastName	AS	CustFullName
FROM	Customers	AS	c
WHERE	EXISTS
		(SELECT	NULL
			FROM	Orders	AS	o
			WHERE	o.CustomerID	=	c.CustomerID
					AND	o.OrderDate	>	DATEADD(MONTH,	-6,	GETDATE()));

CREATE	VIEW	vCustomerStatistics	AS
SELECT	o.CustomerID,	COUNT(o.OrderNumber)	AS	OrderCount,
		SUM(o.OrderTotal)	AS	GrandOrderTotal,
		MAX(o.OrderDate)	AS	LastOrderDate
FROM	Orders	AS	o
GROUP	BY	o.CustomerID;
CREATE	VIEW	vActiveCustomerStatistics	AS
SELECT	a.CustomerID,	a.CustFirstName,	a.CustLastName,
		s.LastOrderDate,	s.GrandOrderTotal
FROM	vActiveCustomers	AS	a
		INNER	JOIN	vCustomerStatistics	AS	s
				ON	a.CustomerID	=	s.CustomerID;

There	are	several	potential	issues,	not	all	of	which	might	be	manifested	the	same
way	on	different	vendors’	products.	However,	generally	speaking,	giving	the



optimizer	the	view	as	the	source	means	that	the	optimizer	has	to	first	decompose	the
view.	If	there	are	other	view	references,	those	must	also	be	decomposed.	In	an	ideal
implementation,	the	optimizer	would	efficiently	“inline”	the	three	view	definitions
into	the	equivalent	statement	in	Listing	3.4.

Listing	3.4	Equivalent	statement	of	combined	views

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
		s.LastOrderDate,	s.GrandOrderTotal
FROM	Customers	AS	c
		INNER	JOIN
				(SELECT	o.CustomerID,
								SUM(o.OrderTotal)	AS	GrandOrderTotal,
								MAX(o.OrderDate)	AS	LastOrderDate
					FROM	Orders	AS	o
					GROUP	BY	o.CustomerID)	AS	s
				ON	c.CustomerID	=	s.CustomerID
WHERE	EXISTS
		(SELECT	NULL
			FROM	Orders	AS	o
			WHERE	o.CustomerID	=	c.CustomerID
					AND	o.OrderDate	>	DATEADD(MONTH,	-6,	GETDATE()));

Note	that	certain	columns	or	expressions	are	already	pruned	from	Listing	3.4	where
they	are	actually	not	used.	In	particular,	OrderCount	and	CustFullName	were
not	present	anywhere	within	the	main	query	and	subquery.	However,	in	practice	the
optimizer	might	be	forced	to	preprocess	the	views	completely,	including	evaluating
all	expressions	in	order	to	create	intermediate	results	for	joining	to	other
intermediate	results.	Because	the	final	view	did	not	use	them	all,	some	expressions
were	discarded	in	spite	of	all	the	hard	work	put	into	calculating	them.
The	same	concerns	apply	to	the	rows	that	could	be	filtered.	For	example,	inactive
customers	were	included	in	vCustomerStatistics	but	ultimately	were	not	in
the	final	view	because	vActiveCustomers	excluded	those	customers.	This	can
potentially	result	in	far	more	I/Os	than	you	anticipated.	You	can	learn	more	about
those	considerations	in	Item	46,	“Understand	how	the	execution	plan	works.”
Although	this	is	a	somewhat	oversimplified	example,	it	is	fairly	easy	to	create	a
view	that	the	optimizer	simply	cannot	inline	when	it	is	referenced	in	other	views.
Worse,	there	would	be	more	than	one	way	to	create	such	views	that	would	prevent
inlining.	Finally,	the	optimizer	generally	does	a	better	job	when	it	is	given	a	simpler
query	expression	that	asks	for	exactly	the	data	it	actually	needs.
For	those	reasons,	it	is	best	to	avoid	creating	views	on	views.	If	you	need	a	different
presentation	of	the	view,	create	a	new	view	that	directly	references	the	base	tables
with	the	appropriate	filters	or	groupings	applied.	You	can	also	embed	subqueries	in
a	view,	which	can	be	useful	in	making	the	aggregated	calculations	“private”	to	the
view.	This	approach	helps	to	prevent	proliferation	of	several	views	that	are	not
directly	usable,	making	the	database	solution	much	more	maintainable.	Refer	to	Item



42,	“If	possible,	use	common	table	expressions	instead	of	subqueries,”	for
additional	techniques.

Things	to	Remember
	Use	views	to	structure	data	in	a	way	that	users	will	find	natural	or	intuitive.
	Use	views	to	restrict	access	to	the	data	such	that	users	can	see	(and	sometimes	modify)
exactly	what	they	need	and	no	more.	Remember	to	use	WITH	CHECK	OPTION	when
necessary.
	Use	views	to	hide	and	reuse	complex	queries.
	Use	views	to	summarize	data	from	various	tables	that	can	be	used	to	generate	reports.
	Use	views	to	implement	and	enforce	naming	and	coding	standards,	especially	when
working	with	legacy	database	designs	that	need	to	be	updated.

Item	19:	Use	ETL	to	Turn	Nonrelational	Data	into	Information
Extract,	Transform,	Load	(ETL)	is	a	set	of	procedures	or	tools	you	can	use	to	Extract	data	from	an
external	source,	Transform	it	to	conform	to	relational	design	rules	or	to	conform	to	other
requirements,	then	Load	it	into	your	database	for	further	use	or	analysis.	Nearly	all	database
systems	provide	various	utilities	to	aid	in	this	process.	These	utilities	are,	quite	simply,	a	means
to	convert	raw	data	into	information.
To	get	an	idea	of	what	these	utilities	can	do,	let’s	take	a	look	at	some	of	the	tools	in	Microsoft
Access—one	of	the	first	Windows-era	database	systems	to	provide	built-in	ways	to	load	and
transform	data	into	something	useful.	Assume	you	work	as	the	marketing	manager	for	a	company
that	produces	breakfast	cereals.	You	need	not	only	to	analyze	competitive	sales	from	another
manufacturer	but	also	to	break	down	this	analysis	by	individual	brands.
You	can	certainly	glean	total	sales	information	from	publicly	available	documents,	but	you	really
want	to	try	to	break	down	competitive	sales	by	individual	brand.	To	do	this,	you	might	strike	up
an	agreement	with	a	major	grocery	store	chain	to	get	them	to	provide	their	sales	information	by
brand	in	return	for	a	small	discount	on	your	products.	The	grocery	chain	promises	to	send	you	a
spreadsheet	containing	sales	data	from	all	its	stores	broken	down	by	competitive	brand	for	the
previous	year.	The	data	you	receive	might	look	like	Table	3.1.



Table	3.1	Sample	competitive	sales	data

It	is	clear	that	some	blank	columns	that	you	do	not	need	were	added	for	readability.	You	also	need
to	transform	the	data	to	end	up	with	one	row	per	product	per	month,	and	you	have	a	separate	table
listing	competitive	products	that	has	its	own	primary	key,	so	you	need	to	match	on	product	name
to	get	the	key	value	to	use	as	a	foreign	key.
Let’s	start	by	extracting	the	data	from	the	spreadsheet	into	a	more	usable	form.	Microsoft	Access
can	import	data	in	many	different	formats,	so	let’s	fire	up	the	Import	tool	to	import	a	spreadsheet.
In	the	first	step,	you	identify	the	file	and	tell	Access	what	you	want	to	do	with	the	output	(import
into	a	new	table,	append	the	data	to	an	existing	table,	or	link	as	a	read-only	table).
When	you	go	to	the	next	step,	Access	shows	you	a	grid	with	a	sample	of	the	data	it	found,	as
shown	in	Figure	3.2.	Because	it	determined	that	the	first	row	might	very	well	be	usable	as	column
names,	it	has	used	the	names	it	found	and	has	assigned	generated	names	to	the	blank	columns.



Figure	3.2	The	Import	Spreadsheet	utility	performing	an	initial	analysis	of	the	data

In	the	following	step,	Access	shows	you	a	display	where	you	can	select	columns	one	at	a	time,
tell	Access	to	skip	unimportant	columns,	and	fix	the	data	type	that	the	utility	has	assumed.	Figure
3.3	on	the	next	page	shows	one	of	the	data	columns	selected.	The	utility	has	assumed	that	the
numbers,	because	they	contain	decimal	points,	should	be	imported	as	the	very	flexible	Double
data	type.	We	know	that	these	are	all	dollar	sales	figures,	so	it	makes	sense	to	change	the	data
type	to	Currency	to	make	it	easier	to	work	with	the	data.	You	can	also	see	the	“Do	not	import”
check	box	(behind	the	drop-down)	that	you	can	select	for	columns	that	you	want	to	ignore.



Figure	3.3	Selecting	columns	to	skip	and	choosing	a	data	type

The	next	step	in	the	utility	lets	you	pick	a	column	to	act	as	the	primary	key,	ask	the	utility	to
generate	an	ID	column	with	incrementing	integers,	or	assign	no	primary	key	to	the	table.	The	final
step	allows	you	to	name	the	table	(the	default	is	the	name	of	the	worksheet)	and	to	invoke	another
utility	after	importing	the	table	to	perform	further	analysis	and	potentially	reload	the	data	into	a
more	normalized	table	design.	If	you	choose	to	run	the	Table	Analyzer,	Access	presents	you	with
a	design	tableau	as	shown	in	Figure	3.4.	In	the	figure,	we	have	already	dragged	and	dropped	the
Product	column	into	a	separate	table	and	named	both	tables.	As	you	can	see,	the	utility
automatically	generates	a	primary	key	in	the	product	table	and	provides	a	matching	foreign	key	in
the	sales	data	table.



Figure	3.4	Using	the	Table	Analyzer	to	break	out	products	into	a	separate	table

Even	after	using	the	Table	Analyzer,	you	can	see	that	there	is	still	plenty	of	work	to	do	to	further
normalize	the	sales	data	into	one	row	per	month.	You	can	“unpivot”	the	sales	data	by	using	a
UNION	query	to	turn	the	columns	into	rows,	as	shown	in	Listing	3.5.	(See	also	Item	21,	“Use
UNION	statements	to	‘unpivot’	non-normalized	data.”)

Listing	3.5	Using	a	UNION	query	to	“unpivot”	a	repeating	group

Click	here	to	view	code	image

SELECT	'2015-01-01'	AS	SalesMonth,	Product,	Jan	AS	SalesAmt
FROM	tblPostSales
UNION	ALL
SELECT	'2015-02-01'	AS	SalesMonth,	Product,	Feb	AS	SalesAmt
FROM	tblPostSales
UNION	ALL
		...	etc.	for	all	12	months.

The	tools	in	Microsoft	Access	are	fairly	simple	(for	example,	they	cannot	handle	totals	rows),	but
they	give	you	an	idea	of	the	amount	of	work	that	can	be	saved	when	trying	to	perform	ETL	to	load
external	data	into	your	database.	As	noted	earlier,	most	database	systems	provide	similar—and	in
some	cases	more	powerful—tools	that	you	can	use.	Examples	include	Microsoft	SQL	Server
Integration	Services	(SSIS),	Oracle	Data	Integrator	(ODI),	and	IBM	InfoSphere	DataStage.
Commercial	tools	are	available	from	vendors	such	as	Informatica,	SAP,	and	SAS,	and	you	can
also	find	a	number	of	open-source	tools	available	on	the	Web.
The	main	point	here	is	that	you	should	use	those	tools	so	that	your	data	conforms	to	the	data	model
that	your	business	needs,	not	the	other	way	around.	A	common	mistake	is	to	build	tables	that	fit



the	incoming	data	as	is	and	then	use	it	directly	in	applications.	The	investment	made	to	transform
data	will	result	in	a	database	that	is	easy	to	understand	and	maintain	in	spite	of	the	divergent	data
sources	from	which	it	may	collect	the	raw	input.

Things	to	Remember
	ETL	tools	allow	you	to	import	nonrelational	data	into	your	database	with	less	effort.
	ETL	tools	help	you	reformat	and	rearrange	imported	data	so	that	you	can	turn	it	into
information.
	Most	database	systems	offer	some	level	of	ETL	tools,	and	there	are	also	commercial	tools
available.

Item	20:	Create	Summary	Tables	and	Maintain	Them
We	mentioned	previously	(in	Item	18,	“Use	views	to	simplify	what	cannot	be	changed”)	that
views	can	be	used	to	simplify	complex	queries,	and	we	even	suggested	that	views	can	be	used	to
provide	summarizations.	Depending	on	the	volume	of	data,	there	are	times	when	it	may	be	more
appropriate	to	create	summary	tables.
When	you	have	a	summary	table,	you	can	be	sure	that	everything	is	in	one	place,	making	it	easier
to	understand	the	data	structure	and	quicker	to	return	information.
One	approach	is	to	create	a	table	that	summarizes	your	data	in	your	details	table,	and	write
triggers	to	update	the	summary	table	every	time	something	changes	in	the	details	table.	However,
if	your	details	table	is	frequently	modified,	this	can	be	processor	intensive.
Another	approach	is	to	use	a	stored	procedure	to	refresh	the	summary	table	on	a	regular	basis:
delete	all	existing	data	rows	and	reinsert	the	summarized	information.
DB2	has	the	concept	of	summary	tables	built	into	it.	DB2	summary	tables	can	maintain	a	summary
of	data	in	one	or	multiple	tables.	You	have	the	option	to	have	the	summary	refreshed	every	time
the	data	in	underlying	table(s)	changes,	or	you	can	refresh	it	manually.	DB2	summary	tables	not
only	allow	users	to	obtain	results	faster,	but	the	optimizer	can	use	the	summary	tables	when	user
queries	indirectly	request	information	already	summarized	in	the	summary	tables	if	ENABLE
QUERY	OPTIMIZATION	is	specified	when	you	create	the	summary	table.	Although	there	may
still	be	“costs”	associated	with	all	that	activity,	at	least	you	did	not	have	to	write	triggers	or
stored	procedures	to	maintain	the	data	for	you.
Listing	3.6	shows	how	to	create	a	summary	table	named	SalesSummary	that	summarizes	data
from	six	different	tables	in	DB2.	Note	that	the	SQL	is	not	much	different	from	that	for	creating	a
view.	In	fact,	a	summary	table	is	a	specific	type	of	materialized	query	table,	identified	by	the
inclusion	of	a	GROUP	BY	clause	in	the	CREATE	SQL.	Note	that	we	had	to	use	Cartesian	joins
with	filters,	because	of	the	restriction	against	using	INNER	JOIN	in	a	materialized	query	table,
and	additionally	provide	COUNT(*)	in	the	SELECT	list	to	enable	the	use	of	the	REFRESH
IMMEDIATE	clause.	Those	are	necessary	to	permit	the	optimizer	to	use	it.

Listing	3.6	Creating	a	summary	table	based	on	six	tables	(DB2)

Click	here	to	view	code	image



CREATE	SUMMARY	TABLE	SalesSummary	AS	(
SELECT
		t5.RegionName	AS	RegionName,
		t5.CountryCode	AS	CountryCode,
		t6.ProductTypeCode	AS	ProductTypeCode,
		t4.CurrentYear	AS	CurrentYear,
		t4.CurrentQuarter	AS	CurrentQuarter,
		t4.CurrentMonth	AS	CurrentMonth,
		COUNT(*)	AS	RowCount,
		SUM(t1.Sales)	AS	Sales,
		SUM(t1.Cost	*	t1.Quantity)	AS	Cost,
		SUM(t1.Quantity)	AS	Quantity,
		SUM(t1.GrossProfit)	AS	GrossProfit
FROM	Sales	AS	t1,	Retailer	AS	t2,	Product	AS	t3,
		datTime	AS	t4,	Region	AS	t5,	ProductType	AS	t6
WHERE	t1.RetailerId	=	t2.RetailerId
		AND	t1.ProductId	=	t3.ProductId
		AND	t1.OrderDay	=	t4.DayKey
		AND	t2.RetailerCountryCode	=	t5.CountryCode
		AND	t3.ProductTypeId	=	t6.ProductTypeId
GROUP	BY	t5.RegionName,	t5.CountryCode,	t6.ProductTypeCode,
		t4.CurrentYear,	t4.CurrentQuarter,	t4.CurrentMonth
)
DATA	INITIALLY	DEFERRED
REFRESH	IMMEDIATE
ENABLE	QUERY	OPTIMIZATION
MAINTAINED	BY	SYSTEM
NOT	LOGGED	INITIALLY;

Listing	3.7	on	the	next	page	shows	how	to	provide	a	similar	capability	in	Oracle	through	the	use
of	a	materialized	view.

Listing	3.7	Creating	a	materialized	view	based	on	six	tables	(Oracle)

Click	here	to	view	code	image

CREATE	MATERIALIZED	VIEW	SalesSummary
		TABLESPACE	TABLESPACE1
		BUILD	IMMEDIATE
		REFRESH	FAST	ON	DEMAND
AS
SELECT	SUM(t1.Sales)	AS	Sales,
		SUM(t1.Cost	*	t1.Quantity)	AS	Cost,
		SUM(t1.Quantity)	AS	Quantity,
		SUM(t1.GrossProfit)	AS	GrossProfit,
		t5.RegionName	AS	RegionName,
		t5.CountryCode	AS	CountryCode,
		t6.ProductTypeCode	AS	ProductTypeCode,
		t4.CurrentYear	AS	CurrentYear,
		t4.CurrentQuarter	AS	CurrentQuarter,
		t4.CurrentMonth	AS	CurrentMonth
FROM	Sales	AS	t1
		INNER	JOIN	Retailer	AS	t2
				ON	t1.RetailerId	=	t2.RetailerId
		INNER	JOIN	Product	AS	t3
				ON	t1.ProductId	=	t3.ProductId
		INNER	JOIN	datTime	AS	t4
				ON	t1.OrderDay	=	t4.DayKey
		INNER	JOIN	Region	AS	t5



				ON	t2.RetailerCountryCode	=	t5.CountryCode
		INNER	JOIN	ProductType	AS	t6
				ON	t3.ProductTypeId	=	t6.ProductTypeId
GROUP	BY	t5.RegionName,	t5.CountryCode,	t6.ProductTypeCode,
		t4.CurrentYear,	t4.CurrentQuarter,	t4.CurrentMonth;

Although	SQL	Server	does	not	directly	support	materialized	views,	the	fact	that	you	can	create
indexes	on	views	has	a	similar	effect,	and	thus	you	can	use	indexed	views	in	a	similar	manner.

Note
Various	vendors	implement	additional	restrictions.	We	advise	first	consulting	your
documentation	to	determine	what	is	actually	supported	before	creating	a	summary
table/materialized	view/indexed	view.

Note	that	there	can	be	some	negative	aspects	to	summary	tables	as	well,	such	as	the	following:
	Each	summary	table	occupies	storage.
	The	administrative	work	(triggers,	constraints,	stored	procedures)	may	need	to	exist	on	both
the	original	table	and	any	summary	tables.
	You	need	to	know	in	advance	what	users	want	to	query	in	order	to	precompute	the	required
aggregations	and	include	them	in	the	summary	tables.
	You	may	need	multiple	summary	tables	if	you	need	different	groupings	or	filters	applied.
	You	may	need	to	set	up	a	schedule	to	manage	the	refresh	of	the	summary	tables.
	You	may	need	to	manage	the	periodicity	of	the	summary	tables	via	SQL.	For	example,	if	the
summary	table	is	supposed	to	show	the	past	12	months,	you	need	a	way	to	remove	data	that
is	more	than	a	year	old	from	the	table.

One	possible	suggestion	to	avoid	some	of	the	increased	administrative	costs	of	having	redundant
triggers,	constraints,	and	stored	procedures	is	to	use	what	Ken	Henderson	referred	to	as	inline
summarization	in	his	book	The	Guru’s	Guide	to	Transact-SQL	(Addison-Wesley,	2000).	This
involves	adding	aggregation	columns	to	the	existing	table.	You	would	use	an	INSERT	INTO
SQL	statement	to	aggregate	data	and	store	those	aggregations	in	the	same	table.	Columns	that	are
not	part	of	the	aggregated	data	would	be	set	to	a	known	value	(such	as	NULL	or	some	fixed	date).
An	advantage	of	doing	inline	summarization	is	that	the	summary	and	the	detail	data	can	be	easily
queried	together	or	separately.	The	summarized	records	are	easily	identified	by	the	known	values
in	certain	columns,	but	other	than	that,	they	are	indistinguishable	from	the	detail	records.
However,	this	approach	necessitates	that	all	queries	on	the	table	containing	both	detail	and
summary	data	be	written	appropriately.

Things	to	Remember
	Storing	summarized	data	can	help	minimize	the	processing	required	for	aggregation.
	Using	tables	to	store	the	summarized	data	allows	you	to	index	fields	containing	the
aggregated	data	for	more	efficient	queries	on	aggregates.
	Summarization	works	best	on	tables	that	are	more	or	less	static.	If	the	source	tables	change
too	often,	the	overhead	of	summarization	may	be	too	great.



	Triggers	can	be	used	to	perform	summarization,	but	a	stored	procedure	to	rebuild	the
summary	table	is	usually	better.

Item	21:	Use	UNION	Statements	to	“Unpivot”	Non-normalized	Data
You	saw	in	Item	3,	“Get	rid	of	repeating	groups,”	how	UNION	queries	can	be	used	to	deal	with
repeating	groups.	We	explore	UNION	queries	a	little	bit	more	in	this	item.	As	you	will	learn	in
Item	22,	“Understand	relational	algebra	and	how	it	is	implemented	in	SQL,”	the	Union	operation
is	one	of	the	eight	relational	algebra	operations	that	can	be	performed	within	the	relational	model
defined	by	Dr.	Edgar	F.	Codd.	It	is	used	to	merge	data	sets	created	by	two	(or	more)	SELECT
statements.
Assume	that	the	only	way	you	are	able	to	get	some	data	for	analysis	is	in	the	form	of	the	Excel
spreadsheet	pictured	in	Figure	3.5,	which	is	obviously	not	normalized.

Figure	3.5	Non-normalized	data	from	Excel

Assuming	you	can	import	that	data	into	your	DBMS,	at	best	you	will	end	up	with	a	table
(SalesSummary)	that	has	five	pairs	of	repeating	groups,	which	we	will	call	OctQuantity,
OctSales,	NovQuantity,	NovSales,	and	so	on	to	FebQuantity	and	FebSales.
Listing	3.8	shows	a	query	that	would	let	you	look	at	the	October	data.

Listing	3.8	SQL	to	extract	October	data

Click	here	to	view	code	image

SELECT	Category,	OctQuantity,	OctSales
FROM	SalesSummary;

Of	course,	to	look	at	the	data	for	a	different	month,	you	need	a	different	query.	And	let’s	not	forget
that	data	that	is	not	normalized	can	be	more	difficult	to	use	for	analysis	purposes.	This	is	where	a
UNION	query	can	help.
There	are	three	basic	rules	that	apply	when	using	UNION	queries:

1.	There	must	be	the	same	number	of	columns	in	each	of	the	queries	making	up	the	UNION
query.

2.	The	order	of	the	columns	in	each	of	the	queries	making	up	the	UNION	query	must	be	the



same.
3.	The	data	types	of	the	columns	in	each	of	the	queries	must	be	compatible.

Note	that	there	is	nothing	in	those	rules	about	the	names	of	the	columns	in	the	queries	that	make	up
the	UNION	query.
Listing	3.9	shows	how	to	combine	all	of	the	data	into	a	normalized	view.

Listing	3.9	Using	UNION	to	normalize	the	data

Click	here	to	view	code	image

SELECT	Category,	OctQuantity,	OctSales
FROM	SalesSummary
UNION
SELECT	Category,	NovQuantity,	NovSales
FROM	SalesSummary
UNION
SELECT	Category,	DecQuantity,	DecSales
FROM	SalesSummary
UNION
SELECT	Category,	JanQuantity,	JanSales
FROM	SalesSummary
UNION
SELECT	Category,	FebQuantity,	FebSales
FROM	SalesSummary;

Table	3.2	shows	a	partial	extract	of	the	data	returned.



Table	3.2	Partial	extract	of	data	returned	by	the	UNION	query	in	Listing	3.9

Two	things	should	stand	out.	First,	there	is	no	way	to	distinguish	to	which	month	the	data	applies.
The	first	two	rows,	for	instance,	represent	the	quantity	and	sales	amount	for	Accessories	for
October	and	November,	but	there	is	no	way	to	tell	that	from	the	data.	As	well,	despite	the	fact	that
the	data	represents	five	months	of	sales,	the	columns	are	named	OctQuantity	and
OctSales.	That	is	because	UNION	queries	get	their	column	names	from	the	names	of	the
columns	in	the	first	SELECT	statement.
Listing	3.10	shows	a	query	that	remedies	both	of	those	issues.

Listing	3.10	Tidying	up	the	UNION	query	used	to	normalize	the	data

Click	here	to	view	code	image

SELECT	Category,	'Oct'	AS	SalesMonth,	OctQuantity	AS	Quantity,
		OctSales	AS	SalesAmt
FROM	SalesSummary



UNION
SELECT	Category,	'Nov',	NovQuantity,	NovSales
FROM	SalesSummary
UNION
SELECT	Category,	'Dec',	DecQuantity,	DecSales
FROM	SalesSummary
UNION
SELECT	Category,	'Jan',	JanQuantity,	JanSales
FROM	SalesSummary
UNION
SELECT	Category,	'Feb',	FebQuantity,	FebSales
FROM	SalesSummary;

Table	3.3	shows	the	same	partial	extract	returned	by	the	query	in	Listing	3.10.

Table	3.3	Partial	extract	of	data	returned	by	the	UNION	query	in	Listing	3.10

Should	you	want	the	data	presented	in	a	different	sequence,	the	ORDER	BY	clause	must	appear
after	the	last	SELECT	in	the	UNION	query,	as	shown	in	Listing	3.11	on	the	next	page.



Listing	3.11	Specifying	the	sort	order	of	the	UNION	query

Click	here	to	view	code	image

SELECT	Category,	'Oct'	AS	SalesMonth,	OctQuantity	AS	Quantity,
		OctSales	AS	SalesAmt
FROM	SalesSummary
UNION
SELECT	Category,	'Nov',	NovQuantity,	NovSales
FROM	SalesSummary
UNION
SELECT	Category,	'Dec',	DecQuantity,	DecSales
FROM	SalesSummary
UNION
SELECT	Category,	'Jan',	JanQuantity,	JanSales
FROM	SalesSummary
UNION
SELECT	Category,	'Feb',	FebQuantity,	FebSales
FROM	SalesSummary
ORDER	BY	SalesMonth,	Category;

Table	3.4	shows	a	partial	extract	returned	by	the	query	in	Listing	3.11.

Table	3.4	Partial	extract	of	data	returned	by	the	UNION	query	in	Listing	3.11

Note
Some	DBMSs	(such	as	Microsoft	Access)	allow	you	to	put	ORDER	BY	clauses
other	than	at	the	end,	but	they	do	not	actually	cause	the	order	to	change.
When	specifying	the	columns	in	the	ORDER	BY	clause,	usually	you	have	the	option



of	referring	to	them	by	name	(remembering	that	the	column	names	are	specified	in	the
first	SELECT)	or	by	position	number.	In	other	words,	Listing	3.11	could	use	ORDER
BY	2,	1	instead	of	ORDER	BY	SalesMonth,	Category.	Oracle,	however,
insists	on	using	ordinal	references.

Another	consideration	is	that	UNION	queries	eliminate	any	duplicate	rows.	Should	this	not	be
what	you	want,	you	can	specify	UNION	ALL	instead	of	UNION,	and	duplicates	will	not	be
eliminated.	On	the	other	hand,	UNION	ALL	can	provide	performance	improvements	as	it	skips
the	step	of	deduplicating	the	result	set,	so	if	you	know	that	the	sources	will	not	overlap,	it	can	be
advantageous	to	specify	UNION	ALL	for	those	queries.

Things	to	Remember
	Each	of	the	SELECT	statements	in	the	UNION	query	must	have	the	same	number	of
columns.
	Although	the	names	of	the	columns	in	the	various	SELECT	statements	do	not	matter,	the
data	types	of	each	column	must	be	compatible.
	To	control	the	order	in	which	the	data	appears,	you	can	use	an	ORDER	BY	clause	after	the
last	SELECT	statement.
	Use	UNION	ALL	rather	than	UNION	if	you	do	not	wish	to	eliminate	duplicate	rows	or	pay
the	performance	penalty	of	deduplicating	rows.



4.	Filtering	and	Finding	Data

Perhaps	the	most	important	task	you	can	do	in	SQL	when	attempting	to	turn	the	data	found	in	one
or	more	tables	into	useful	information	is	look	for	data	of	interest	or	filter	out	data	not	of	interest.
Sometimes	filtering	involves	matching	an	entire	set	of	data	with	another	entire	set.	Other	times
you	accomplish	filtering	by	testing	for	specific	values	in	one	or	more	columns.	This	chapter
explores	all	the	techniques	you	can	use	to	find	exactly	the	information	you	need	from	your
database.

Item	22:	Understand	Relational	Algebra	and	How	It	Is	Implemented	in	SQL
Dr.	Edgar	F.	Codd	is	widely	recognized	as	the	“father”	of	the	relational	model	of	database
management.	He	introduced	terms	such	as	relation	(a	table	or	view),	tuple	(a	row),	and	attribute
(a	column).	He	also	described	a	set	of	operations—relational	algebra—that	can	be	performed
within	the	model.	These	operations	are

1.	Select	(also	known	as	Restrict)
2.	Project
3.	Join
4.	Intersect
5.	Cartesian	Product
6.	Union
7.	Divide
8.	Difference

You	can	perform	any	of	the	operations	using	modern	SQL,	but	the	names	of	the	keywords	are	often
different.	In	the	case	of	Divide	(see	also	Item	26,	“Divide	your	data	if	you	need	a	perfect	match”),
you	need	a	combination	of	SQL	operations	to	achieve	the	result.

Select	(Restrict)
Select	or	Restrict	is	the	selection	and	filtering	of	rows	to	obtain	a	subset.	In	SQL,	you	define	the
source	set	of	data	you	want	in	the	FROM	clause	and	then	filter	the	rows	returned	using	the	WHERE
or	HAVING	clause.	Picturing	a	set	of	data	as	a	set	of	columns	and	rows,	the	Select	(Restrict)
operation	returns	the	light	green	shaded	rows	shown	in	Figure	4.1.

Figure	4.1	Performing	a	Select	operation

Project
Project	is	the	selection	of	columns	or	expressions	that	you	want	the	database	system	to	return.	In



SQL,	you	use	the	SELECT	clause,	including	aggregate	functions,	and	the	GROUP	BY	clause	to
define	what	columns	the	database	system	returns.	Imagining	a	Selected	set	as	a	set	of	columns	and
rows,	the	Project	operation	returns	the	yellow	shaded	columns	shown	in	Figure	4.2.

Figure	4.2	Performing	a	Project	operation

Note	that	it	is	perfectly	valid	to	Select	(Restrict)	the	rows	returned	using	values	in	columns	that
are	not	ultimately	chosen	by	the	Project	operation.

Join
Join	is	the	linking	of	related	tables	or	sets	of	data	on	key	values.	A	critical	component	of	the
relational	model	is	that	all	relations	(tables)	must	have	a	unique	identifier	(primary	key),	and	that
any	related	tables	must	contain	a	copy	of	the	unique	identifier	(foreign	key)	from	the	related	table.
As	you	might	suspect,	you	use	the	JOIN	keyword	in	a	FROM	clause	to	perform	a	Join.	SQL
expands	the	concept	by	allowing	you	to	specify	INNER	JOIN,	NATURAL	JOIN,	or	OUTER
JOIN.	Figure	4.3	shows	two	tables	and	the	result	of	performing	both	INNER	JOIN	and	OUTER
JOIN	on	two	related	tables,	using	the	PKey	in	Table	One	matched	with	the	FKey	in	Table	Two.

Figure	4.3	The	result	of	performing	INNER	JOIN	and	OUTER	JOIN	on	two	related	tables



Notice	that	the	result	of	INNER	JOIN	includes	only	the	rows	from	the	two	tables	that	match	in
both	tables.	OUTER	JOIN	includes	all	rows	from	Table	One	and	any	matching	rows	from	Table
Two.	For	the	row	in	Table	One	that	has	no	matching	value	in	Table	Two,	the	result	returns	null
values	in	the	Table	Two	columns.

Note
NATURAL	JOIN	is	similar	to	INNER	JOIN,	but	it	matches	rows	on	columns	from
the	two	tables	with	the	same	name.	You	do	not	specify	an	ON	clause.	Of	the	major
implementations,	only	MySQL,	PostgreSQL,	and	Oracle	support	NATURAL	JOIN.

Intersect
The	Intersect	operation	must	be	performed	on	two	sets	with	identical	columns.	The	result	of	an
Intersect	is	the	set	of	rows	from	the	two	sets	where	all	the	values	match	in	the	respective	columns.
A	number	of	major	database	systems	support	the	Intersect	operation	directly:	DB2,	Microsoft
SQL	Server,	Oracle,	and	PostgreSQL.	When	the	database	supports	Intersect	directly,	you	create
one	set	with	a	Select	(Restrict)	and	Project	and	then	INTERSECT	the	first	set	with	a	second	set.
If	your	database	does	not	support	the	Intersect	operation	(Microsoft	Access	and	MySQL	do	not),
you	can	achieve	the	same	result	by	performing	an	inner	join	on	all	the	columns	from	both	sets.
Listing	4.1	shows	how	to	find	customers	who	have	purchased	both	a	bike	and	a	skateboard	using
INTERSECT.

Note
The	actual	product	names	in	the	Sales	Orders	sample	database	are	not	simply
Skateboard	and	Bike,	so	the	example	queries	in	Listing	4.1,	Listing	4.2,	and	Listing
4.3	in	this	item	actually	return	no	rows.	To	solve	these	using	the	sample	database,
you	would	need	to	use	LIKE	'%Bike%'	and	LIKE	'%Skateboard%'	to	see
results.	We	used	the	simple	values	in	the	example	queries	to	make	them	easier	to
understand,	with	the	caveat	that	those	are	not	the	most	efficient	methods	for
searching.

Listing	4.1	Solving	a	problem	using	an	Intersect	operation

Click	here	to	view	code	image

SELECT	c.CustFirstName,	c.CustLastName
FROM	Customers	AS	c
WHERE	c.CustomerID	IN
		(SELECT	o.CustomerID
			FROM	Orders	AS	o
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName	=	'Bike')
INTERSECT



SELECT	c2.CustFirstName,	c2.CustLastName
FROM	Customers	AS	c2
WHERE	c2.CustomerID	IN
		(SELECT	o.CustomerID
			FROM	Orders	AS	o
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName	=	'Skateboard');

Listing	4.2	shows	how	to	solve	the	same	problem	using	INNER	JOIN.

Listing	4.2	Solving	a	problem	using	INNER	JOIN	to	emulate	an	Intersect	operation

Click	here	to	view	code	image

SELECT	c.CustFirstName,	c.CustLastName
FROM
		(SELECT	DISTINCT	c.CustomerFirstName,
					c.CustomerLastName
			FROM	Customers	AS	c
					INNER	JOIN	Orders	AS	o
							ON	c.CustomerID	=	o.CustomerID
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName	=	'Bike')	AS	c
INNER	JOIN
		(SELECT	DISTINCT	c.CustomerFirstName,
					c.CustomerLastName
			FROM	Customers	AS	c
					INNER	JOIN	Orders	AS	o
							ON	c.CustomerID	=	o.CustomerID
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName	=	'Skateboard'
			)	AS	c2
				ON	c.CustFirstName	=	c2.CustFirstName
						AND	c.CustLastName	=	c2.CustLastName;

When	you	use	INTERSECT,	your	database	system	eliminates	any	duplicate	rows	produced	by	the
operation.	Some	database	systems,	such	as	DB2	and	PostgreSQL,	support	INTERSECT	ALL,
which	returns	all	rows,	including	duplicates.

Cartesian	Product
A	Cartesian	Product	is	the	result	of	combining	all	rows	in	one	set	with	all	rows	in	the	second	set.
It	is	called	a	product	because	the	resulting	number	of	rows	is	the	number	of	rows	in	the	first	set
times	the	number	of	rows	in	the	second	set.	For	example,	if	the	first	set	contains	eight	rows,	and
the	second	set	contains	three	rows,	the	resulting	set	contains	24	rows	(8	*	3	=	24).
To	produce	a	Cartesian	Product,	simply	list	your	tables	or	sets	in	your	FROM	clause	with	no



JOIN	clause.	All	major	database	systems	support	this	syntax,	but	some	insert	the	keywords
CROSS	JOIN	after	you	save	your	work.	See	Chapter	8,	“Cartesian	Products,”	and	Chapter	9,
“Tally	Tables,”	for	examples	using	Cartesian	Products.

Union
The	Union	operation	merges	two	sets	that	have	identical	columns.	All	major	implementations	of
SQL	support	the	UNION	keyword.	Similarly	to	Intersect,	your	SQL	should	Select	and	Project	one
set,	add	the	UNION	keyword,	and	then	Select	and	Project	the	second	set.
One	twist	to	UNION	as	implemented	in	SQL	is	that	you	can	specify	UNION	ALL.	When	you	do
that,	your	database	system	does	not	remove	any	duplicate	rows	found	in	the	two	sets,	so	you	may
find	some	rows	repeated	if	they	appear	in	both	sets.
The	Union	operation	can	be	useful,	for	example,	to	assemble	a	mailing	list	to	both	customers	and
suppliers	by	extracting	the	name,	address,	city,	and	state	from	the	two	unrelated	tables.	As	we
have	already	discussed	in	Chapter	3,	“When	You	Can’t	Change	the	Design,”	UNION	can	be	useful
to	create	a	“normalized”	set	of	data	from	a	table	badly	designed	with	repeating	groups.

Divide
Divide	in	relational	algebra	is	not	quite	as	simple	as	dividing	one	number	by	another	to	achieve	a
quotient	and	a	remainder.	When	you	divide	one	set	with	another,	you	are	asking	your	database
system	to	return	all	the	rows	in	the	dividend	set	that	contain	all	the	members	of	the	divisor	set.
This	can	be	useful,	for	example,	to	find	all	applicants	(with	a	set	of	qualifications)	who	meet	all
the	requirements	(with	another	set	of	qualifications)	for	a	particular	job.	The	result	of	dividing
applicants	by	qualifications	yields	the	set	of	applicants	who	meet	all	the	requirements.
No	commercial	implementation	of	SQL	provides	a	Divide	operation.	You	can,	however,	gain	the
equivalent	of	a	Divide	operation	using	standard	SQL.	See	Item	26	for	examples.

Difference
The	Difference	operation	is	basically	subtracting	one	set	from	another.	As	for	Union	and	Intersect,
you	should	be	working	with	two	sets	that	contain	identical	columns.	DB2,	PostgreSQL,	and
Microsoft	SQL	Server	all	support	Difference,	but	using	the	EXCEPT	keyword.	(DB2	also
supports	EXCEPT	ALL,	which	does	not	eliminate	duplicate	rows.)	Oracle	supports	the
operation	using	the	MINUS	keyword.	MySQL	and	Microsoft	Access	do	not	support	Difference
directly,	but	you	can	emulate	the	operation	using	OUTER	JOIN	and	a	test	for	null	values	in	the
set	you	are	subtracting.
Let’s	say	you	want	to	find	all	customers	who	ordered	a	skateboard	but	did	not	order	a	helmet.
Listing	4.3	shows	how	to	do	that	using	both	EXCEPT	and	OUTER	JOIN.

Listing	4.3	Solving	a	problem	using	a	Difference	operation

Click	here	to	view	code	image

SELECT	c.CustFirstName,	c.CustLastName
FROM	Customers	AS	c



WHERE	c.CustomerID	IN
		(SELECT	o.CustomerID
			FROM	Orders	AS	o
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName	=	'Skateboard')
EXCEPT
SELECT	c2.CustFirstName,	c2.CustLastName
FROM	Customers	AS	c2
WHERE	c2.CustomerID	IN
		(SELECT	o.CustomerID
			FROM	Orders	AS	o
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName	=	'Helmet');

To	learn	how	to	solve	a	Difference	problem	using	OUTER	JOIN	and	a	test	for	IS	NULL,	see
Item	29,	“Correctly	filter	the	‘right’	side	of	a	‘left’	join.”
Although	SQL	does	not	exactly	correspond	one	to	one	with	the	relational	algebra	operations,	all
major	database	engines	do	use	relational	algebra	as	part	of	optimizing	SQL	queries,	so	being
familiar	with	relational	algebra	is	helpful	in	understanding	how	your	database	engine	transforms
an	SQL	query	into	an	execution	plan.	The	rest	of	the	items	in	this	chapter	mention	the	relational
operation	being	performed	where	there	is	no	direct	operation	in	SQL.	Also,	understanding	the
material	covered	in	this	item	will	be	helpful	for	reading	Item	46,	“Understand	how	the	execution
plan	works,”	where	engines	will	expose	the	internal	working	and,	therefore,	the	relational
algebra.

Things	to	Remember
	The	relational	model	defines	eight	operations	that	you	can	perform	on	sets.
	All	major	implementations	of	SQL	support	Select,	Project,	Join,	Cartesian	Product,	and
Union.
	Some	implementations	support	Intersect	and	Difference	using	the	INTERSECT	and
EXCEPT	or	MINUS	keywords.
	No	major	implementation	directly	supports	Divide,	but	you	can	achieve	the	same	result
using	other	parts	of	SQL.

Item	23:	Find	Non-matches	or	Missing	Records
Although	it	is	common	to	use	SQL	statements	to	retrieve	details	of	what	has	occurred	from	a
database,	sometimes	you	need	to	retrieve	details	of	what	has	not	occurred.
Imagine	that	you	are	in	charge	of	inventory	for	your	company.	You	know	that	your	company	sells	a
variety	of	products,	and	you	know	how	to	retrieve	details	from	your	Sales	Orders	database	to	tell
you	how	well	a	particular	product	is	selling.	What	about	those	that	are	not	selling?	How	can	you
identify	them?



Perhaps	the	approach	that	is	easiest	to	understand	involves	making	a	list	of	those	products	that
have	been	purchased	and	seeing	which	ones	are	not	in	that	list,	as	illustrated	in	Listing	4.4.	You
can	see	the	subquery	against	the	Order_Details	table	which	determines	those	products	that
have	been	purchased,	and	the	use	of	the	NOT	IN	operator	to	determine	which	items	in
Products	are	not	in	that	list.

Listing	4.4	Using	NOT	IN

Click	here	to	view	code	image

SELECT	p.ProductNumber,	p.ProductName
FROM	Products	AS	p
WHERE	p.ProductNumber
		NOT	IN	(SELECT	ProductNumber	FROM	Order_Details);

Running	the	query	in	Listing	4.4	returns	the	results	shown	in	Table	4.1.

Table	4.1	Products	that	have	not	been	purchased

Although	that	query	may	be	easy	to	understand,	it	turns	out	that	it	is	very	expensive	to	run.	The
subquery	must	go	through	the	entire	Order_Details	table	to	build	the	list	of	products	that
have	been	purchased,	sifting	through	duplicate	values,	and	then	each	ProductNumber	in	the
Products	table	must	be	compared	to	that	list.
There	must	be	more	efficient	ways	to	achieve	those	results,	and	there	are.	One	approach	is	to	use
the	EXISTS	operator,	which	checks	whether	a	subquery	returns	at	least	one	row,	as	shown	in
Listing	4.5.	You	can	see	that	the	subquery	against	Order_Details	is	now	limited	to	checking
for	a	specific	product.	In	theory,	the	use	of	EXISTS	should	be	faster	than	using	NOT	IN,
especially	when	the	subquery	returns	a	large	result	set,	because	once	the	query	engine	has	found
the	first	record,	it	can	stop	processing	the	subquery.

Listing	4.5	Using	an	existence	check

Click	here	to	view	code	image

SELECT	p.ProductNumber,	p.ProductName
FROM	Products	AS	p
WHERE	NOT	EXISTS
		(SELECT	*
			FROM	Order_Details	AS	od
			WHERE	od.ProductNumber	=	p.ProductNumber);

Note
See	Item	41,	“Know	the	difference	between	correlated	and	non-correlated



subqueries,”	for	a	discussion	about	the	appropriateness	of	using	a	correlated
subquery.

Another	approach	is	to	use	the	LEFT	JOIN	operator,	combined	with	a	WHERE	clause	looking
for	null	values,	as	shown	in	Listing	4.6.	This	is	sometimes	referred	to	as	a	“frustrated	join”:
LEFT	JOIN	would	normally	return	all	records	from	the	“left”	table,	but	the	WHERE	clause
“frustrates”	that	by	limiting	the	results	to	only	those	rows	where	there	is	no	matching	record	in	the
“right”	table.

Listing	4.6	Using	a	“frustrated	join”

Click	here	to	view	code	image

SELECT	p.ProductNumber,	p.ProductName
FROM	Products	AS	p	LEFT	JOIN	Order_Details	AS	od
		ON	p.ProductNumber	=	od.ProductNumber
WHERE	od.ProductNumber	IS	NULL;

Unfortunately,	there	is	no	clear-cut	answer	as	to	which	approach	is	best.	Each	DBMS	engine
tends	to	have	a	different	bias:	some	(such	as	Microsoft	Access	and	older	versions	of	MySQL)
seem	to	favor	frustrated	joins,	but	others	(such	as	Microsoft	SQL	Server)	seem	to	prefer	existence
checks.	You	will	learn	in	Item	44,	“Learn	to	use	your	system’s	query	analyzer,”	how	to	test	which
method	works	best	for	the	data	you	have.	And	even	though	each	DBMS	engine	seems	to	have	its
own	preference,	you	will	always	find	cases	where	the	engine	prefers	a	different	method	because
of	the	specific	distribution	of	the	data.
One	more	factor	to	consider	is	the	fact	that	sometimes	a	DBMS’s	optimizer	is	smart	enough	to
convert	a	query	as	written	in	Listing	4.4	to	one	like	Listing	4.5	or	Listing	4.6.	However,	for	more
complex	queries,	automatic	transformation	might	not	be	possible,	so	it	is	beneficial	to	pay
attention	to	what	is	a	good	default	for	your	DBMS	and	test	where	performance	is	critical.

Things	to	Remember
	Although	easy	to	understand,	using	the	NOT	IN	operator	is	usually	not	the	most	efficient
approach.
	Using	the	NOT	EXISTS	operator	should	be	faster	than	using	the	NOT	IN	operator.
	Using	a	“frustrated	join”	is	often	very	efficient,	but	it	depends	on	how	the	DBMS	handles
nulls.
	Use	your	DBMS	query	analyzer	to	determine	which	approach	is	best	for	your	specific
situation.

Item	24:	Know	When	to	Use	CASE	to	Solve	a	Problem
Use	CASE	when	you	need	to	test	some	value	or	expression	to	determine	the	correct	output.	It	is
literally	an	IF	.	.	.	THEN	.	.	.	ELSE	for	SQL.	You	can	use	CASE	anywhere	you	can	use	a	value
expression—as	a	column	to	be	returned	in	a	SELECT	clause,	or	as	a	search	condition	in	a
WHERE	or	HAVING	clause.



Let’s	say	your	customers	receive	a	discount	based	on	their	customer	rating	at	the	time	they	place
an	order.	“A”	customers	get	10%	off,	“B”	customers	get	5%	off,	and	“C”	customers	pay	full
price.	You	could	perhaps	use	a	lookup	table	that	has	the	three	rating	values	and	the	related
discount	that	you	would	link	to	each	customer	row,	but	you	can	also	use	CASE	to	directly	test	the
rating	value	and	apply	the	correct	discount.	Using	a	lookup	table	gives	you	a	bit	more	flexibility
over	time	because	it	is	easy	to	modify	the	percentages	in	a	table,	but	that	would	always	require	an
additional	JOIN	in	your	queries.
Perhaps	several	of	your	tables	use	code	values	(such	as	M	or	F	for	gender),	but	you	want	to
output	the	full	word	in	a	report.	Maybe	you	have	international	customers	who	want	to	be	billed	in
their	local	currency,	so	you	need	to	supply	the	appropriate	currency	symbol	when	you	display
money	values.	In	a	database	containing	international	weather	data,	you	use	a	C	or	F	symbol	to
denote	temperatures	recorded	in	Centigrade	or	Fahrenheit,	but	you	want	to	display	both	values	in
a	report,	so	you	test	the	code	and	apply	the	appropriate	conversion	formula.

Term	Definitions
	Value	expression:	A	literal,	a	column	reference,	a	function	call,	a	CASE
expression,	or	a	subquery	that	returns	a	scalar	value.	Value	expressions	can	be
combined	with	operators	such	as	+,	–,	*,	/,	or	||	depending	on	data	type.
	Search	condition:	One	or	more	predicates	optionally	preceded	by	NOT	and
combined	using	AND	or	OR.
	Predicate:	A	test	that	returns	true	or	false.	A	predicate	can	be	a	comparison,	a
range,	a	set	membership,	a	pattern	match,	a	null,	quantified,	or	existence.
Comparison	is	two	value	expressions	compared	using	=,	<>,	<,	>,	<=,	or	>=.	A
range	is	a	value	expression,	optionally	NOT,	between	a	value	expression	and
another	value	expression.	Set	membership	is	a	value	expression,	optionally	NOT,
in	a	list	returned	by	a	subquery	or	a	list	of	value	expressions.	A	pattern	match	is	a
value	expression,	optionally	NOT,	like	a	pattern	string.	A	null	is	a	value
expression,	optionally	NOT,	the	keyword	NULL.	Quantified	is	a	value	expression
followed	by	a	comparison	operator,	the	keywords	ALL,	SOME,	or	ANY,	and	a
subquery.	Exists	is	the	keyword	EXISTS	followed	by	a	subquery	that	typically
filters	on	a	value	returned	by	the	outer	query.

The	CASE	statement	comes	in	two	forms:	simple	and	searched.	A	simple	CASE	statement	tests
one	value	expression	for	equality	with	another	value	expression	and	returns	one	value	expression
if	they	match	and	another	value	expression	if	they	do	not.	Listing	4.7	shows	some	examples	of	a
simple	CASE	expression.

Note
The	ISO	Standard	states	that	you	can	specify	WHEN	IS	NULL,	but	most	major
implementations	do	not	support	that	syntax.	If	you	need	to	test	for	NULL,	use
NULLIF	or	<expression>	IS	NULL	in	the	WHEN	clause	in	a	searched	CASE.



Listing	4.7	Examples	using	a	simple	CASE	expression

Click	here	to	view	code	image

--	(Replace	a	code	with	a	word	–	two	examples.)
CASE	Students.Gender
		WHEN	'M'
				THEN	'Male'
				ELSE	'Female'	END

CASE	Students.Gender
		WHEN	'M'	THEN	'Male'
		WHEN	'F'	THEN	'Female'
		ELSE	'Unknown'	END

--	(Convert	a	Centigrade	reading	to	Fahrenheit.)
CASE	Readings.Measure
		WHEN	'C'
				THEN	(Temperature	*	9	/	5)	+	32
				ELSE	Temperature
END

--	(Return	the	discount	amount	based	on	customer	rating.)
CASE	(SELECT	Customers.Rating	FROM	Customers
				WHERE	Customers.CustomerID	=	Orders.CustomerID)
		WHEN	'A'	THEN	0.10
		WHEN	'B'	THEN	0.05
		ELSE	0.00	END

When	you	need	to	perform	something	other	than	an	equality	test,	or	you	need	to	test	the	values	in
more	than	one	value	expression,	use	searched	CASE.	Instead	of	using	a	value	expression
immediately	after	the	CASE	keyword,	you	can	code	one	or	more	WHEN	clauses	that	use	a	search
condition.	The	search	condition	can	be	as	simple	as	a	comparison	operator	between	two	value
expressions	but	can	be	as	complex	as	a	range,	a	set	membership,	a	pattern	match,	a	null,	a
quantified	test,	or	an	existence	test.	Listing	4.8	shows	some	examples	of	a	searched	CASE
expression.	Note	that	the	database	system	stops	evaluating	the	rest	of	the	expression	as	soon	as	it
encounters	a	true	result.

Listing	4.8	Examples	using	a	searched	CASE	expression

Click	here	to	view	code	image

--	(Generate	a	salutation	based	on	gender	and	marital	status.)
CASE	WHEN	Students.Gender	=	'M'	THEN	'Mr.'
		WHEN	Students.MaritalStatus	=	'S'	THEN	'Ms.'
		ELSE	'Mrs.'	END

--	(Rate	sales	based	by	Product	on	quantity	sold.)
SELECT	Products.ProductNumber,	Products.ProductName,
CASE	WHEN
			(SELECT	SUM(QuantityOrdered)
				FROM	Order_Details
				WHERE	Order_Details.ProductNumber	=
						Products.ProductNumber)	<=	200
		THEN	'Poor'



		WHEN
			(SELECT	SUM(QuantityOrdered)
				FROM	Order_Details
				WHERE	Order_Details.ProductNumber	=
						Products.ProductNumber)	<=	500
		THEN	'Average'
		WHEN
			(SELECT	SUM(QuantityOrdered)
				FROM	Order_Details
				WHERE	Order_Details.ProductNumber	=
						Products.ProductNumber)	<=	1000
		THEN	'Good'
		ELSE	'Excellent'	END
FROM	Products;

--	(Calculate	raises	based	on	position.)
CASE	Staff.Title
		WHEN	'Instructor'
		THEN	ROUND(Salary	*	1.05,	0)
		WHEN	'Associate	Professor'
		THEN	ROUND(Salary	*	1.04,	0)
		WHEN	'Professor'	THEN	ROUND(Salary	*	1.035,	0)
		ELSE	Salary	END

As	you	might	imagine,	the	possibilities	are	endless,	particularly	when	you	use	searched	CASE.	To
help	cement	the	uses	for	CASE,	let’s	look	at	a	few	examples	in	context	in	a	complete	SQL
statement.	The	first	example,	shown	in	Listing	4.9,	correctly	calculates	a	person’s	age	based	on
birth	date.	(The	sample	code	in	this	listing	first	appeared	in	John	Viescas	and	Michael	J.
Hernandez,	SQL	Queries	for	Mere	Mortals,	Third	Edition	[Addison-Wesley,	2014].)

Listing	4.9	Calculating	a	person’s	age	using	CASE

Click	here	to	view	code	image

SELECT	S.StudentID,	S.LastName,	S.FirstName,
			YEAR(SYSDATE)	-	YEAR(S.BirthDate)	-
				CASE	WHEN	MONTH(S.BirthDate)	<	MONTH(SYSDATE)
						THEN	0
				WHEN	MONTH(S.BirthDate)	>	MONTH(SYSDATE)
						THEN	1
				WHEN	DAY(S.BirthDate)	>	DAY(SYSDATE())
						THEN	1
						ELSE	0	END	AS	Age
		FROM	Students	AS	S;

Note
In	DB2,	use	the	CURRENT	DATE	special	register	rather	than	SYSDATE().	In
Oracle,	use	EXTRACT	rather	than	YEAR.	In	SQL	Server,	use	SYSDATETIME()	or
GETDATE().	Microsoft	Access	does	not	support	CASE,	but	you	can	get	similar
results	using	its	IIf()	and	Date()	functions.

You	certainly	can	use	CASE	as	part	of	a	predicate	in	a	WHERE	or	HAVING	clause,	but	it	might
not	be	as	efficient	as	some	alternatives.	Problems	that	involve	multiple	“if	this	and	not	that”



criteria	can	often	be	challenging	to	solve.	One	such	problem	is	“Display	all	customers	who
purchased	skateboards	but	not	helmets.”	Listing	4.10	shows	one	way	to	solve	that	problem	using
CASE	in	the	WHERE	clause.

Note
The	actual	product	names	in	the	Sales	Orders	sample	database	are	not	simply
Skateboard	and	Helmet,	so	the	example	query	in	Listing	4.10	actually	returns	no
rows.	To	solve	this	using	the	sample	database,	you	would	need	to	use	LIKE
'%Skateboard%'	and	LIKE	'%Helmet%'	to	see	results.	We	used	the	simple
values	in	the	example	queries	to	make	them	easier	to	understand.

Listing	4.10	Finding	customers	who	bought	skateboards	but	not	helmets

Click	here	to	view	code	image

SELECT	CustomerID,	CustFirstName,	CustLastName
FROM	Customers
WHERE	(1	=
		(CASE	WHEN	CustomerID	NOT	IN
				(SELECT	Orders.CustomerID
					FROM	Orders
							INNER	JOIN	Order_Details
									ON	Orders.OrderNumber	=	Order_Details.OrderNumber
							INNER	JOIN	Products
									ON	Order_Details.ProductNumber
													=	Products.ProductNumber
					WHERE	Products.ProductName	=	'Skateboard')
				THEN	0
		WHEN	CustomerID	IN
				(SELECT	Orders.CustomerID
					FROM	Orders
							INNER	JOIN	Order_Details
									ON	Orders.OrderNumber	=	Order_Details.OrderNumber
							INNER	JOIN	Products
									ON	Order_Details.ProductNumber
													=	Products.ProductNumber
					WHERE	Products.ProductName	=	'Helmet')
				THEN	0
				ELSE	1	END));

Note	that	we	first	eliminated	customers	who	did	not	buy	a	skateboard	and	then	eliminated
customers	who	bought	a	helmet.	In	Item	25,	“Know	techniques	to	solve	multiple-criteria
problems,”	we	will	show	you	how	to	solve	that	problem	using	IN	and	NOT	IN	directly.

Things	to	Remember
	CASE	is	a	powerful	tool	whenever	you	need	to	solve	an	IF	.	.	.	THEN	.	.	.	ELSE	problem.
	You	can	use	simple	CASE	to	perform	equals	tests	and	searched	CASE	to	use	complex
predicates.
	You	can	use	CASE	wherever	you	can	use	a	value	expression,	including	as	a	column



definition	in	a	SELECT	clause	or	as	part	of	a	predicate	in	a	WHERE	or	HAVING	clause.

Item	25:	Know	Techniques	to	Solve	Multiple-Criteria	Problems
Solving	problems	using	criteria	on	one	table—even	compound	criteria—is	relatively
straightforward.	When	you	want	to	return	rows	from	one	table	based	on	criteria	applied	to	a
related	table,	it	can	get	a	bit	tricky,	particularly	when	you	need	to	apply	compound	criteria.	An
example	might	be	“Find	all	orders	for	skateboards	that	also	include	helmets	or	knee	pads.”	To
solve	that,	you	want	to	return	rows	from	the	Orders	table,	but	you	must	apply	criteria	to	the
Order_Details	table.
It	gets	even	more	complicated	if	you	go	up	one	level:	“List	all	customers	who	have	ordered	a
skateboard	and	who	have	also	ordered	a	helmet	and	knee	pads	and	gloves.”	Solving	this	requires
that	you	fetch	rows	from	the	Customers	table	while	applying	criteria	through	the	related
Orders	and	Order_Details	tables.
Some	of	the	techniques	you	can	use	to	solve	this	sort	of	problem	include	the	following:

	INNER	JOIN	or	OUTER	JOIN	with	an	IS	NULL	test
	IN	or	NOT	IN	using	subqueries
	EXISTS	or	NOT	EXISTS	using	subqueries

Let’s	find	all	the	really	conscientious	customers.	We	want	to	display	all	the	customers	who
ordered	not	only	a	skateboard	but	also	a	helmet,	knee	pads,	and	gloves.	Assume	we	have	a
“typical”	Sales	Orders	database	that	includes	tables	as	shown	in	Figure	4.4	on	the	next	page.

Note
For	simplicity,	we	assume	that	an	equal	match	on	the	product	name	will	suffice.	In
reality,	you	might	also	need	to	join	to	a	product	categories	table	to	match	on	the
category	name	because	a	realistic	sales	database	is	likely	to	offer	more	than	one
brand	or	model	of	skateboards,	gloves,	knee	pads,	and	helmets.	The	actual	product
names	in	the	Sales	Orders	sample	database	are	not	simply	Skateboard,	Helmet,	Knee
Pads,	and	Gloves,	so	the	example	queries	in	the	listings	in	this	item	actually	return
no	rows.	To	solve	this	using	the	sample	database,	you	would	need	to	use	LIKE
'%Skateboard%',	LIKE	'%Helmet%',	and	so	on	to	see	results.



Figure	4.4	Design	for	a	typical	Sales	Orders	database

You	might	be	tempted	to	solve	this	all-inclusive	problem	by	writing	a	query	as	shown	in	Listing
4.11.

Listing	4.11	Solving	compound	inclusive	criteria	the	wrong	way

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName
FROM	Customers	AS	c
WHERE	c.CustomerID	IN
		(SELECT	o.CustomerID
			FROM	Orders	AS	o
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName
					IN	('Skateboard',	'Helmet',	'Knee	Pads',	'Gloves'));

That	will	not	get	you	what	you	want	because	it	will	list	any	customer	who	ever	ordered	a
skateboard	or	a	helmet	or	knee	pads	or	gloves.	The	correct	way	involves	using	SQL	that	is	much
more	complex.	First,	we	will	solve	it	using	INNER	JOIN	as	shown	in	Listing	4.12.

Listing	4.12	Solving	compound	inclusive	criteria	correctly

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName
FROM	Customers	AS	c
		INNER	JOIN
				(SELECT	DISTINCT	Orders.CustomerID
					FROM	Orders	AS	o
							INNER	JOIN	Order_Details	AS	od



									ON	o.OrderNumber	=	oc.OrderNumber
							INNER	JOIN	Products	AS	p
									ON	p.ProductNumber	=	od.ProductNumber
					WHERE	p.ProductName	=	'Skateboard')	AS	OSk
				ON	c.CustomerID	=	OSk.CustomerID
		INNER	JOIN
				(SELECT	DISTINCT	Orders.CustomerID
					FROM	Orders	AS	o
							INNER	JOIN	Order_Details	AS	od
									ON	o.OrderNumber	=	od.OrderNumber
							INNER	JOIN	Products	AS	p
									ON	p.ProductNumber	=	od.ProductNumber
					WHERE	p.ProductName	=	'Helmet')	AS	OHel
				ON	c.CustomerID	=	OHel.CustomerID
		INNER	JOIN
				(SELECT	DISTINCT	Orders.CustomerID
					FROM	Orders	AS	o
							INNER	JOIN	Order_Details	AS	od
									ON	o.OrderNumber	=	od.OrderNumber
							INNER	JOIN	Products	AS	p
									ON	p.ProductNumber	=	od.ProductNumber
					WHERE	p.ProductName	=	'Knee	Pads')	AS	OKn
				ON	c.CustomerID	=	OKn.CustomerID
		INNER	JOIN
				(SELECT	DISTINCT	Orders.CustomerID
					FROM	Orders	AS	o
							INNER	JOIN	Order_Details	AS	od
									ON	o.OrderNumber	=	od.OrderNumber
							INNER	JOIN	Products	AS	p
									ON	p.ProductNumber	=	od.ProductNumber
					WHERE	p.ProductName	=	'Gloves')	AS	OGl
				ON	c.CustomerID	=	OGl.CustomerID;

Although	much	more	complex,	the	second	query	returns	the	correct	answer	because	it	finds	only
the	customers	who	match	on	all	four	subqueries	embedded	in	the	outer	FROM	clause.	Note	that	we
used	DISTINCT	in	the	subqueries	to	ensure	that	we	ended	up	with	only	one	row	per	customer.
You	can	also	solve	this	type	of	problem	using	four	subqueries	and	the	IN	predicate	in	a	WHERE
clause	applied	to	the	Customers	table,	as	shown	in	Listing	4.13.	To	make	the	final	SQL	easier
to	read,	we	first	create	a	function	to	handle	the	subqueries.

Listing	4.13	Using	a	function	to	solve	compound	inclusive	criteria	correctly

Click	here	to	view	code	image

CREATE	FUNCTION	CustProd(@ProdName	varchar(50))	RETURNS	Table
AS
RETURN
		(SELECT	Orders.CustomerID	AS	CustID
			FROM	Orders
					INNER	JOIN	Order_Details
							ON	Orders.OrderNumber
											=	Order_Details.OrderNumber
			INNER	JOIN	Products
					ON	Products.ProductNumber
									=	Order_Details.ProductNumber
			WHERE	ProductName	=	@ProdName);



SELECT	C.CustomerID,	C.CustFirstName,	C.CustLastName
FROM	Customers	AS	C
WHERE	C.CustomerID	IN
		(SELECT	CustID	FROM	CustProd('Skateboard'))
AND	C.CustomerID	IN
		(SELECT	CustID	FROM	CustProd('Helmet'))
AND	C.CustomerID	IN
		(SELECT	CustID	FROM	CustProd('Knee	Pads'))
AND	C.CustomerID	IN
		(SELECT	CustID	FROM	CustProd('Gloves'));

Finally,	you	could	solve	this	problem	similarly	to	using	IN	and	subqueries	with	EXISTS	and
correlated	subqueries.	(See	also	Item	41,	“Know	the	difference	between	correlated	and	non-
correlated	subqueries.”)	Listing	4.14	gives	you	an	idea	of	how	you	might	begin	to	construct	your
WHERE	clause	using	EXISTS.

Listing	4.14	Solving	compound	inclusive	criteria	using	EXISTS

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName
FROM	Customers	AS	c
WHERE	EXISTS
		(SELECT	o.CustomerID
			FROM	Orders	AS	o
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName	=	'Skateboard'
					AND	o.CustomerID	=	C.CustomerID)
		AND	EXISTS	...

You	will	run	into	the	same	challenges	when	you	need	to	find	a	row	using	multiple	positive	and
negative	criteria	on	a	related	table.	It	has	been	interesting	up	to	this	point	to	find	all	the	customers
who	did	buy	protective	gear	with	their	skateboards,	but	from	a	marketing	standpoint	store	owners
might	be	more	interested	in	those	who	bought	just	the	skateboard	so	that	they	can	send	out	a
mailer	or	e-mails	to	remind	those	folks	that	they	should	also	get	the	protective	gear.
So,	let’s	search	for	all	customers	who	purchased	a	skateboard	but	did	not	buy	a	helmet,	gloves,
and	knee	pads.	You	might	be	tempted	to	solve	the	problem	as	shown	in	Listing	4.15.

Listing	4.15	Looking	for	customers	who	did	not	buy	protective	gear

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName
FROM	Customers	AS	c
WHERE	c.CustomerID	IN
		(SELECT	o.CustomerID
			FROM	Orders	AS	o
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName	=	'Skateboard')



		AND	c.CustomerID	NOT	IN
		(SELECT	o.CustomerID
			FROM	Orders	AS	o
					INNER	JOIN	Order_Details	AS	od
							ON	o.OrderNumber	=	od.OrderNumber
					INNER	JOIN	Products	AS	p
							ON	p.ProductNumber	=	od.ProductNumber
			WHERE	p.ProductName
					IN	('Helmet',	'Gloves',	'Knee	Pads'));

Do	you	understand	why	that	will	not	work?	As	long	as	customers	have	purchased	a	helmet	or
gloves	or	knee	pads,	you	will	not	find	them	in	the	query	results.	Let’s	refine	that	query	and	take
advantage	of	the	function	we	created	earlier.	The	correct	solution	is	in	Listing	4.16.

Listing	4.16	Finding	customers	who	did	not	purchase	all	the	protective	gear

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName
FROM	Customers	AS	c
WHERE	c.CustomerID	IN
				(SELECT	CustID	FROM	CustProd('Skateboard'))
		AND	(c.CustomerID	NOT	IN
				(SELECT	CustID	FROM	CustProd('Helmet'))
		OR	c.CustomerID	NOT	IN
				(SELECT	CustID	FROM	CustProd('Gloves'))
		OR	c.CustomerID	NOT	IN
				(SELECT	CustID	FROM	CustProd('Knee	Pads')));

Notice	that	the	first	predicate	in	the	WHERE	clause	finds	customers	who	purchased	skateboards,
and	the	remaining	predicates	find	customers	who	did	not	purchase	helmets	or	did	not	purchase
gloves	or	did	not	purchase	knee	pads.	As	you	can	see,	when	you	require	something,	you	use	AND,
and	when	you	include	possibilities,	you	use	OR.

Things	to	Remember
	Correctly	solving	problems	requiring	tests	for	multiple	criteria	via	a	related	table	or	tables
is	not	simple	or	straightforward.
	When	you	want	rows	from	a	parent	table	that	qualifies	for	more	than	one	criterion	applied
to	one	or	more	related	child	tables,	you	must	use	INNER	JOIN	or	OUTER	JOIN	with	a
null	test	(aka	frustrated	join)	on	table	subqueries	or	IN	and	AND	or	NOT	IN	and	OR	on
table	subqueries	to	achieve	the	correct	answer.

Item	26:	Divide	Your	Data	If	You	Need	a	Perfect	Match
Division	is	one	of	the	eight	set	operations	defined	by	Dr.	E.	F.	Codd	in	his	classic	book	The
Relational	Model	for	Database	Management	published	by	Addison-Wesley.	(The	others	are
Select,	Project,	Join,	Intersect,	Cartesian	Product,	Union,	and	Difference.	See	Item	22,
“Understand	relational	algebra	and	how	it	is	implemented	in	SQL,”	for	details	about	the	other
operations.)	The	operation	involves	“dividing”	one	large	set	(the	dividend)	by	a	smaller	set	(the
divisor)	to	obtain	the	quotient—all	the	members	of	the	dividend	set	that	completely	match	the
divisor	set.



Common	problems	you	can	solve	with	division	include	these:
	Find	all	job	candidates	who	meet	all	the	requirements	for	a	given	job.
	List	all	suppliers	who	can	provide	all	the	parts	to	build	a	component.
	Display	all	customers	who	ordered	a	certain	set	of	products.

To	help	you	visualize	a	division	operation,	consider	Figure	4.5.

Figure	4.5	Dividing	all	customer	products	by	a	set	of	products	of	interest

In	the	figure,	the	outer	circle	represents	all	products	that	customers	have	purchased.	The	three
shaded	circles	represent	the	products	that	specific	customers	have	purchased,	and	you	can	see	that
there	are	some	products	that	all	of	them	have	purchased.	The	small	white	circle	represents	a
subset	of	products	for	which	we	want	to	determine	the	customers	who	purchased	them.
In	this	simple	example,	all	three	customers	purchased	some	of	the	items	in	the	set	of	products	of
interest,	but	only	Customer	A	purchased	all	of	them.	If	you	divide	the	set	of	all	customer	products
by	the	set	of	products	of	interest,	the	answer	should	be	Customer	A—the	only	customer	who
purchased	them	all.
Unfortunately,	there	is	no	single	operation	in	SQL	to	perform	a	division,	so	you	must	use	a
combination	of	the	supported	operations	to	achieve	the	result.	We	actually	showed	you	one	way	to
solve	a	Divide	in	Item	25,	“Know	techniques	to	solve	multiple-criteria	problems,”	which
involved	using	IN	and	a	subquery	for	each	member	of	the	divisor	set.	That	is	an	acceptable	way
to	do	it	when	the	divisor	contains	just	a	few	entries,	but	it	becomes	nearly	unworkable	when	the
divisor	set	is	large.
Let’s	begin	by	defining	views	for	the	two	sets—the	dividend	and	the	divisor.	Listing	4.17	creates
the	dividend	set—the	set	of	all	customers	and	the	products	that	they	have	purchased.



Listing	4.17	Creating	a	view	for	all	customers	and	their	products

Click	here	to	view	code	image

CREATE	VIEW	CustomerProducts	AS
SELECT	DISTINCT	c.CustomerID,	c.CustFirstName,
		c.CustLastName,	p.ProductName
FROM	Customers	AS	c
		INNER	JOIN	Orders	AS	o
				ON	c.CustomerID	=	o.CustomerID
		INNER	JOIN	Order_Details	AS	od
				ON	o.OrderNumber	=	od.OrderNumber
		INNER	JOIN	Products	AS	p
				ON	p.ProductNumber	=	od.ProductNumber;

Note	that	we	use	DISTINCT	to	produce	one	row	per	customer	and	product	just	in	case	a
customer	ordered	the	same	product	more	than	once.
Now	let’s	create	a	view	on	the	divisor	set—the	set	of	all	products	of	interest.	Just	as	we	did	in
Item	25,	let’s	find	all	customers	who	purchased	a	skateboard,	a	helmet,	knee	pads,	and	gloves.
Listing	4.18	shows	the	code	to	create	the	view.

Listing	4.18	Creating	a	view	to	list	the	products	of	interest

Click	here	to	view	code	image

CREATE	VIEW	ProdsOfInterest	AS
SELECT	Products.ProductName
FROM	Products
WHERE	ProductName	IN
		('Skateboard',	'Helmet',	'Knee	Pads',	'Gloves');

Note
In	the	Sales	Orders	sample	database,	there	are	actually	no	simple	products	named
Skateboard,	Helmet,	Knee	Pads,	and	Gloves,	so	the	simple	solutions	presented	for
Listings	4.17,	4.18,	4.19,	and	4.20	will	not	work.	We	provided	the	simpler	versions
in	the	text	to	help	you	understand	the	process.	In	the	sample	files,	you	will	find	both
the	versions	presented	here	and	slightly	more	complex	versions	that	use	LIKE	to
convert	the	product	name	to	a	category	name	for	the	division	to	produce	a	true	result.

Now	let’s	take	a	look	at	one	way	to	do	a	Divide	to	achieve	the	result.	This	technique	was
described	by	Chris	Date,	a	partner	of	Dr.	Codd,	in	his	books.	Listing	4.19	shows	a	solution.

Listing	4.19	Dividing	customer	products	by	products	of	interest	using	subqueries

Click	here	to	view	code	image

SELECT	DISTINCT	CP1.CustomerID,	CP1.CustFirstName,
		CP1.CustLastName
FROM	CustomerProducts	AS	CP1
WHERE	NOT	EXISTS
		(SELECT	ProductName



			FROM	ProdsOfInterest	AS	PofI
			WHERE	NOT	EXISTS
					(SELECT	CustomerID
						FROM	CustomerProducts	AS	CP2
						WHERE	CP2.CustomerID	=	CP1.CustomerID
								AND	CP2.ProductName	=	PofI.ProductName));

Simply	stated,	we	want	all	customer	product	rows	where	there	is	not	a	product	where	there	is	not
a	row	in	customer	products	that	matches	the	product	and	customer	ID.	That	is	a	confusing	double
negative	in	English,	but	the	logic	is	sound.	An	interesting	side	effect	of	this	technique	is	that	when
the	divisor	set	(the	products	of	interest	in	this	case)	is	empty,	the	query	returns	all	customer
product	rows.
Now	let’s	look	at	another	technique	using	GROUP	BY	and	HAVING—a	technique	made	popular
by	Joe	Celko	in	his	books.	For	this	technique,	it	is	critical	that	we	use	DISTINCT	in	the	first
view	to	create	unique	customer	product	rows	because	we	are	going	to	count	to	get	the	solution,
and	we	do	not	want	duplicate	purchases	to	mess	up	the	count.	For	example,	if	a	customer	buys	a
skateboard,	a	helmet,	and	two	pairs	of	gloves	(in	separate	orders),	the	count	of	rows	is	four,
which	matches	the	count	of	products	of	interest.	Without	DISTINCT,	the	customer	would	be
selected	in	error	even	though	he	or	she	did	not	purchase	knee	pads.	Rows	selected	from	the
Products	table	by	product	name	in	the	second	view	are	unique,	so	we	do	not	need	DISTINCT
there.	Listing	4.20	shows	the	answer.

Listing	4.20	Dividing	the	two	sets	using	GROUP	BY	and	HAVING

Click	here	to	view	code	image

SELECT	CP.CustomerID,	CP.CustFirstName,	CP.CustLastName
FROM	CustomerProducts	AS	CP
		CROSS	JOIN	ProdsOfInterest	AS	PofI
WHERE	CP.ProductName	=	PofI.ProductName
GROUP	BY	CP.CustomerID,	CP.CustFIrstName,	CP.CustLastName
HAVING	COUNT(CP.ProductName)	=
		(SELECT	COUNT(ProductName)	FROM	ProdsOfInterest);

Basically,	we	have	found	all	customers’	product	rows	that	match	any	row	in	the	products	of
interest,	but	we	keep	only	those	rows	where	we	get	a	match	on	all	the	rows	in	products	of	interest
by	comparing	the	count.	Note	that	when	the	divisor	set	is	empty,	this	query	returns	no	rows,	which
is	different	from	the	first	technique.

Things	to	Remember
	Divide	is	one	of	the	eight	recognized	relational	set	operations,	but	neither	the	SQL	Standard
nor	any	major	database	systems	implement	a	DIVIDE	keyword.
	You	can	use	Divide	to	discover	the	rows	in	one	set	that	match	all	the	rows	in	a	second	set.
	You	can	perform	a	Divide	by	testing	for	each	row	in	the	divisor	set	(IN	with	subqueries
shown	in	Item	25),	NOT	EXISTS,	and	GROUP	BY/HAVING.

Item	27:	Know	How	to	Correctly	Filter	a	Range	of	Dates	on	a	Column



Containing	Both	Date	and	Time
Using	the	WHERE	clause	to	limit	what	your	query	returns	should	be	second	nature	to	you	by	now.
However,	we	find	that	many	developers	do	not	filter	date	ranges	as	effectively	as	they	could.
As	the	Appendix,	“Date	and	Time	Types,	Operations,	and	Functions,”	describes,	there	are	a
number	of	different	data	types	that	can	be	used	to	store	dates	and	times.	We	are	specifically
concerned	with	data	stored	using	the	data	types	listed	in	Table	4.2.

Table	4.2	Date	and	time	data	types

Consider	the	table	created	in	Listing	4.21.

Listing	4.21	Table	creation	Data	Definition	Language	(DDL)	for	a	log	table

Click	here	to	view	code	image

CREATE	TABLE	ProgramLogs	(
		LogID	int	PRIMARY	KEY,
		LogUserID	varchar(20)	NOT	NULL,
		LogDate	timestamp	NOT	NULL,
		Logger	varchar(50)	NOT	NULL,
		LogLevel	varchar(10)	NOT	NULL,
		LogMessage	varchar(1000)		NOT	NULL
);

Should	you	want	to	see	the	log	messages	for	a	particular	day,	you	might	be	tempted	to	use	a
statement	such	as	is	shown	in	Listing	4.22.

Listing	4.22	First	attempt	to	list	log	messages	for	a	specific	day

Click	here	to	view	code	image

SELECT	L.LogUserID,	L.Logger,	L.LogLevel,	L.LogMessage
FROM	ProgramLogs	AS	L
WHERE	L.LogDate	=	CAST('7/4/2016'	AS	timestamp);

However,	there	is	a	subtle	issue	at	play	here.	Although	you	wrote	the	query	and	knew	that	you
intended	to	get	data	for	July	4,	what	happens	if	the	system	has	British	regional	settings	or	the
language	is	set	to	French?	That	date	could	very	well	be	interpreted	as	April	7!	Much	better	to	use



an	unambiguous	date	format,	such	as	yyyy-mm-dd,	yyyymmdd,	or	yyyy-mm-dd	hh:mm:ss[.nnn].

Note
Although	the	ISO	8601	format	yyyy-mm-ddThh:mm:ss[.nnn]	is	often	listed	as	a	valid
option,	it	is	not	actually	part	of	the	SQL	Standard.	The	ANSI	SQL	Standard	for	date
and	time	is	yyyy-mm-dd	hh:mm:ss,	which	does	not	actually	conform	to	the	ISO	8601
Standard	that	requires	a	“T”	separator.	Not	all	DBMSs	support	ISO	8601
specifications.

However,	even	that	may	not	be	sufficient.	For	example,	Microsoft	has	chosen	a	nonstandard
implementation	for	dates	in	nnnn-nn-nn	format.	If	the	general	date	format	is	dmy,	SQL	Server
interprets	dates	as	being	in	ydm	format	when	the	year	is	first.	Because	the	default	format	for	date
depends	on	the	setting	of	each	individual	login,	it	is	conceivable	that	2016-07-04	could	be
interpreted	as	07	April	2016	depending	on	the	user’s	language	settings.	To	avoid	issues	like	this,
you	should	use	an	explicit	date	conversion	function	rather	than	relying	on	implicit	date
conversion.	For	instance,	Listing	4.22	should	be	rewritten	as	shown	in	Listing	4.23.

Listing	4.23	Second	attempt	to	list	log	messages	for	a	specific	day

Click	here	to	view	code	image

SELECT	L.LogUserID,	L.Logger,	L.LogLevel,	L.LogMessage
FROM	ProgramLogs	AS	L
WHERE	L.LogDate	=	CONVERT(datetime,	'2016-07-04',	120);

Note
The	SQL	in	this	item	is	for	SQL	Server.	Consult	your	database	documentation	for
alternatives	if,	for	example,	your	database	does	not	support	the	CONVERT()
function.	Though	SQL	Server	supports	CAST(),	which	is	a	part	of	the	SQL
Standard,	it	does	not	allow	for	explicitly	specifying	the	date	style;	120	indicates	that
the	format	is	given	in	a	yyyy-mm-dd	hh:nn:ss	format.

When	you	run	the	query,	odds	are	you	will	not	actually	get	any	data	returned.	Remember	that	the
LogDate	column	is	defined	as	a	timestamp,	meaning	that	it	contains	both	date	and	time.	Because
the	date	literal	provided	has	no	time	component,	the	database	system	will	convert	the	value	to
2016-07-04	00:00:00,	and	unless	there	was	an	entry	logged	at	exactly	that	time,	the	system	will
return	no	rows.
You	could	try	removing	the	time	component	from	the	column	by	using	CAST(L.LogDate	AS
date),	but	that	would	make	the	query	non-sargable,	so	the	system	will	not	use	any	indexes.	(See
Item	28,	“Write	sargable	queries	to	ensure	that	the	engine	will	use	indexes,”	for	more	details.)
Listing	4.24	shows	a	sargable	query	that	could	work.

Listing	4.24	Third	attempt	to	list	log	messages	for	a	specific	day



Click	here	to	view	code	image

SELECT	L.LogUserID,	L.Logger,	L.LogLevel,	L.LogMessage
FROM	ProgramLogs	AS	L
WHERE	L.LogDate	BETWEEN	CONVERT(datetime,	'2016-07-04',	120)
		AND	CONVERT(datetime,	'2016-07-05',	120);

A	potential	issue	is	that	BETWEEN	is	inclusive:	if	there	are	any	records	in	the	table	for	2016-07-
05	00:00:00,	they	will	be	included	as	well.	To	avoid	that,	you	could	try	to	formulate	a	more	exact
final	datetime,	as	shown	in	Listing	4.25.

Listing	4.25	Fourth	attempt	to	list	log	messages	for	a	specific	day

Click	here	to	view	code	image

SELECT	L.LogUserID,	L.Logger,	L.LogLevel,	L.LogMessage
FROM	ProgramLogs	AS	L
WHERE	L.LogDate	BETWEEN	CONVERT(datetime,	'2016-07-04',	120)
		AND	CONVERT(datetime,	'2016-07-04	23:59:59.999',	120);

The	problem	with	that,	however,	is	that	(at	least	in	SQL	Server)	the	resolution	for	the	datetime
type	is	3.33	ms.	That	means	that	SQL	Server	will	actually	round	up	2016-07-04	23:59:59.999	to
2016-07-05	00:00:00.000,	so	it	buys	you	nothing.	Although	you	could	change	the	precision	to
2016-07-04	23:59:59.997	to	get	around	the	rounding	problem,	not	all	datetime	fields	have	the
same	precision,	and	it	turns	out	that	would	still	be	rounded	up	for	smalldatetime	fields.
There	is	also	the	possibility	that	the	precision	could	change	in	a	new	release,	or	vary	from	DBMS
to	DBMS.	A	far	more	stable	solution	is	to	avoid	the	inclusivity	of	the	BETWEEN	statement	as
shown	in	Listing	4.26.

Listing	4.26	Recommended	approach	to	list	log	messages	for	a	specific	day

Click	here	to	view	code	image

SELECT	L.LogUserID,	L.Logger,	L.LogLevel,	L.LogMessage
FROM	ProgramLogs	AS	L
WHERE	L.LogDate	>=	CONVERT(datetime,	'2016-07-04',	120)
		AND	L.LogDate	<	CONVERT(datetime,	'2016-07-05',	120);

There	is	one	more	consideration	to	think	about.	If	the	query	would	contain	input	from	users	(e.g.,
as	a	part	of	a	stored	procedure	with	parameters	for	dates),	users	might	often	enter	something	like
2016-07-04	for	start	and	2016-07-05	for	end.	But	they	really	want	>=	'2016-07-04'	and	<
'2016-07-06'.	Therefore,	it	is	a	good	habit	to	write	the	query	to	use	a	DATEADD	function	to
advance	the	date	as	illustrated	in	Listing	4.27.

Listing	4.27	Advancing	the	end	date	provided	by	user	input

Click	here	to	view	code	image

WHERE	L.LogDate	>=
				CONVERT(datetime,	@startDate,	120)
		AND	L.LogDate	<
				CONVERT(datetime,	DATEADD(DAY,	1,	@endDate)	120);



The	key	point	is	that	you	should	use	DATEADD	or	an	equivalent	function	in	your	DBMS	to	ensure
that	a	date	is	incremented	in	a	well-defined	manner	rather	than	relying	on	the	DBMS’s
implementation	and	to	account	for	the	difference	between	how	users	and	software	programs
interpret	what	is	the	“end.”

Things	to	Remember
	Do	not	rely	on	implicit	date	conversion;	use	explicit	conversion	functions	to	date	literals.
	Do	not	apply	functions	to	datetime	columns	or	the	query	will	not	be	sargable.
	Remember	that	rounding	errors	can	cause	datetime	values	to	be	inexact;	use	>=	and	<
rather	than	BETWEEN.

Item	28:	Write	Sargable	Queries	to	Ensure	That	the	Engine	Will	Use	Indexes
We	wrote	about	the	importance	of	appropriate	indexes	to	improve	query	performance	in	Item	11,
“Carefully	consider	creation	of	indexes	to	minimize	index	and	data	scanning.”	Having	indexes
alone	is	not	sufficient,	though.	In	order	for	the	DBMS	engine	to	take	advantage	of	an	index,	the
predicate	of	the	query	(i.e.,	the	WHERE,	ORDER	BY,	GROUP	BY,	or	HAVING	clause)	needs	to
be	“sargable”	(the	term	is	derived	from	a	contraction	of	Search	ARGument	ABLE).	It	is
important,	therefore,	to	understand	what	prevents	a	query	from	being	sargable.

Note
DB2	used	to	refer	to	sargable	and	non-sargable	predicates	in	v1	and	v2,	but	those
terms	are	no	longer	used.	Instead,	DB2	now	refers	to	Stage	1	and	Stage	2	predicates,
where	Stage	1	predicates	outperform	Stage	2.	Specific	predicates	tend	to	migrate
from	Stage	2	to	Stage	1	depending	on	DB2	version.

Depending	on	the	value	that	is	being	checked,	the	following	operators	can	usually	be	considered
sargable:

	=
	>
	<
	>=
	<=
	BETWEEN
	LIKE	(without	leading	wildcards)
	IS	[NOT]	NULL

Although	the	following	operators	may	be	sargable,	their	use	rarely	improves	performance:
	<>
	IN



	OR
	NOT	IN
	NOT	EXISTS
	NOT	LIKE

The	following	all	result	in	non-sargable	queries:1
1.	The	SELECT	clause	can	contain	non-sargable	expressions	without	adversely	affecting	performance.

	Using	a	function	that	operates	on	one	or	more	fields	in	the	WHERE	clause	conditions.
(Because	the	function	has	to	be	evaluated	against	each	row,	the	query	optimizer	will	not	use
the	index	unless	the	index	itself	contains	the	same	function.)
	Performing	arithmetic	calculation	on	a	field	in	a	WHERE	clause.
	Using	a	wildcard	search	query	such	as	LIKE	'%something%'.

Consider	the	Employees	table	shown	in	Listing	4.28.	Note	that	the	SQL	creates	indexes	for
each	field	in	the	table.

Listing	4.28	Table	and	index	creation	DDL

Click	here	to	view	code	image

CREATE	TABLE	Employees	(
		EmployeeID	int	IDENTITY	(1,	1)	PRIMARY	KEY,
		EmpFirstName	varchar(25)	NULL,
		EmpLastName	varchar(25)	NULL,
		EmpDOB	date	NULL,
		EmpSalary	decimal(15,2)	NULL
);
CREATE	INDEX	[EmpFirstName]
		ON	[Employees]([EmpFirstName]	ASC);
CREATE	INDEX	[EmpLastName]
		ON	[Employees]([EmpLastName]	ASC);
CREATE	INDEX	[EmpDOB]
		ON	[Employees]([EmpDOB]	ASC);
CREATE	INDEX	[EmpSalary]
		ON	[Employees]([EmpSalary]	ASC);

Listing	4.29	shows	a	non-sargable	way	to	limit	the	data	to	only	those	employees	born	in	a
particular	year.	This	is	because	it	is	necessary	to	perform	the	Year	function	call	on	every	row	in
the	table	in	order	to	determine	which	rows	match,	meaning	that	the	index	on	EmpDOB	will	not	be
used.

Listing	4.29	Non-sargable	query	to	limit	data	to	a	particular	year

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	YEAR(EmpDOB)	=	1950;

Note



Oracle	does	not	have	a	Year()	function.	You	need	to	use	EXTRACT(year	FROM
EmpDOB).

Listing	4.30	shows	how	to	retrieve	the	same	data	in	a	sargable	way.

Listing	4.30	Sargable	query	to	limit	data	to	a	particular	year

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpDOB	>=	CAST('1950-01-01'	AS	Date)
		AND	EmpDOB	<	CAST('1951-01-01'	AS	Date);

Listing	4.31	shows	a	non-sargable	query	attempting	to	find	all	employees	whose	surnames	start
with	a	specific	letter.

Listing	4.31	Non-sargable	query	to	limit	data	to	a	particular	initial

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	LEFT(EmpLastName,	1)	=	'S';

Note
Oracle	does	not	have	a	Left()	function.	You	need	to	use	the	function
SUBSTR(EmpLastName,	1,	1).

Listing	4.32	shows	how	to	do	the	same	thing	in	a	sargable	manner.	Note	that	the	use	of	the	LIKE
operator	does	not	make	the	query	non-sargable,	because	the	wildcard	character	is	only	at	the	end
of	the	string.	Note	that	this	by	itself	does	not	guarantee	that	indexes	will	be	used.

Listing	4.32	Sargable	query	to	limit	data	to	a	particular	initial

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpLastName	LIKE	'S%';

Listing	4.33	shows	another	non-sargable	query	with	the	use	of	the	IsNull()	function.

Listing	4.33	Non-sargable	query	to	find	a	particular	name	in	a	field	that	can	be	null

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	IsNull(EmpLastName,	'Viescas')	=	'Viescas';



Note
IsNull()	is	an	SQL	Server	function.	Oracle	uses	NVL(),	and	DB2	and	MySQL
use	IFNULL().	Another	possibility	is	to	use	the	COALESCE()	function.

Listing	4.34	shows	how	to	perform	that	same	query	in	a	sargable	manner.

Listing	4.34	Sargable	query	to	find	a	particular	name	in	a	field	that	can	be	null

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpLastName	=	'Viescas'
		OR	EmpLastName	IS	NULL;

In	fact,	the	use	of	the	OR	may	well	prevent	the	index	on	EmpLastName	from	being	used,	so	the
query	in	Listing	4.35	may	be	safer.	This	is	particularly	true	when	you	have	separate	filtered
indexes	for	values	and	nulls.

Listing	4.35	Improved	sargable	query	to	find	a	particular	name	in	a	field	that	can	be	null

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpLastName	=	'Viescas'
UNION	ALL
SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpLastName	IS	NULL;

The	query	in	Listing	4.36	is	non-sargable	because	of	the	calculation	on	the	field.	The	index	on
EmpSalary	will	not	be	used,	and	the	calculation	will	be	done	for	every	row	in	the	table.

Listing	4.36	Non-sargable	query	to	find	a	calculated	value

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpSalary*1.10	>	100000;

If,	however,	the	calculation	does	not	involve	the	field,	as	in	Listing	4.37,	the	query	becomes
sargable.

Listing	4.37	Sargable	query	to	find	a	calculated	value

Click	here	to	view	code	image

SELECT	EmployeeID,	EmpFirstName,	EmpLastName
FROM	Employees
WHERE	EmpSalary	>	100000/1.10;



Unfortunately,	there	is	no	way	to	make	LIKE	'%something%'	sargable.

Things	to	Remember
	Avoid	using	non-sargable	operators.
	Do	not	use	functions	that	operate	on	one	or	more	fields	in	a	WHERE	clause.
	Do	not	perform	arithmetic	calculations	on	fields	in	a	WHERE	clause.
	When	using	the	LIKE	operator,	only	use	a	wildcard	at	the	end	of	the	string	(not
'%something'	or	'some%thing').

Item	29:	Correctly	Filter	the	“Right”	Side	of	a	“Left”	Join
Suppose	you	are	asked	to	find	all	customers	who	never	placed	an	order.	To	do	that,	you	need	to
perform	a	Difference	relational	operation	in	SQL	(in	other	words,	return	the	data	that	is	in	set	1
but	not	in	set	2),	and	you	use	OUTER	JOIN	with	an	IS	NULL	test.	For	example,	to	find	all
customers	who	have	never	placed	an	order,	you	use	Customers	LEFT	OUTER	JOIN
Orders	and	test	for	a	null	value	in	the	primary	key	of	the	Orders	table	(sometimes	called	a
“frustrated”	outer	join).	You	are	subtracting	all	the	customer	orders	from	the	set	of	all	customers
to	find	the	customers	who	are	not	in	the	set	of	customers	who	placed	orders.

Note
See	Item	22,	“Understand	relational	algebra	and	how	it	is	implemented	in	SQL,”	for
details	about	the	other	relational	operations.

When	you	need	to	apply	a	filter	to	the	set	that	you	are	subtracting	from	a	larger	set	(basically,	the
table	or	set	on	the	“right”	side	of	a	“left”	join	or	vice	versa),	it	is	easy	to	make	a	mistake.	In	a
query	that	does	Customers	LEFT	JOIN	Orders,	Customers	is	on	the	“left”	side	of	the
join,	and	Orders	is	on	the	“right”	side.	For	example,	consider	this	problem:

Show	me	all	customers	and,	if	some	exist,	any	orders	that	they	placed	during	the	last
quarter	of	2015.

You	might	be	tempted	to	solve	the	problem	using	SQL	as	shown	in	Listing	4.38.

Listing	4.38	First	attempt	to	show	all	customers	and	a	subset	of	orders

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
		o.OrderNumber,	o.OrderDate,	o.OrderTotal
FROM	Customers	AS	c
		LEFT	JOIN	Orders	AS	o
				ON	c.CustomerID	=	o.CustomerID
WHERE	o.OrderDate	BETWEEN	CAST('2015-10-01'	AS	DATE)
		AND	CAST('2015-12-31'	AS	DATE);

Note



The	SQL	in	this	item	uses	ISO	Standard	SQL.	Consult	your	database	documentation
for	alternatives	if,	for	example,	your	database	does	not	support	the	CAST()
function.

When	you	run	the	query,	you	find	order	data	in	every	row,	and	it	seems	that	many	of	the	customers
are	missing.	Then	you	remember	that	you	have	to	test	for	NULL	if	you	want	the	“missing”	rows	to
show	up,	so	next	you	try	the	SQL	shown	in	Listing	4.39.

Listing	4.39	Second	attempt	to	show	all	customers	and	a	subset	of	orders

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
		o.OrderNumber,	o.OrderDate,	o.OrderTotal
FROM	Customers	AS	c
		LEFT	JOIN	Orders	AS	o
				ON	c.CustomerID	=	o.CustomerID
WHERE	(o.OrderDate	BETWEEN	CAST('2015-10-01'	AS	DATE)
				AND	CAST('2015-12-31'	AS	DATE))
		OR	o.OrderNumber	IS	NULL;

The	output	of	the	second	query	looks	a	bit	better,	but	you	still	might	not	see	all	the	customer	rows.
A	database	engine	first	resolves	the	FROM	clause,	then	applies	the	WHERE	clause,	and	finally
returns	the	columns	requested	in	the	SELECT	clause.	In	the	first	query,	Customers	LEFT
JOIN	Orders	certainly	does	return	all	customer	rows	and	any	matching	rows	from	the
Orders	table.	Applying	the	WHERE	clause	automatically	eliminates	any	customers	who	have	not
placed	orders	because	those	rows	contain	a	null	in	the	columns	from	the	Orders	table.	NULL
can	never	compare	to	any	value,	so	filtering	by	a	range	of	dates	eliminates	those	rows.	So	with
the	query	in	Listing	4.38,	all	you	get	are	the	customers	who	placed	an	order	in	the	specified	date
range—the	same	result	you	would	get	with	INNER	JOIN.
In	the	query	in	Listing	4.39,	we	asked	for	not	only	the	orders	within	the	date	range	but	also	any
rows	containing	a	null	in	the	OrderNumber	column	in	the	hope	that	we	would	thus	get	all
customer	rows.	The	set	returned	by	the	FROM	clause	does	indeed	include	all	customers.	When	a
customer	has	placed	any	order,	the	columns	from	the	Orders	table	will	not	be	null.	When	a
customer	has	never	placed	an	order	at	all,	the	query	returns	exactly	one	row	for	that	customer
with	null	values	in	the	columns	from	the	Orders	table.
So,	the	query	in	Listing	4.39	does	return	all	customers	who	have	never	placed	an	order	and	any
customers	who	did	place	an	order	in	the	last	quarter	of	2015.	If	there	is	a	customer	who	placed	an
order	earlier,	but	not	in	the	last	quarter,	that	customer	will	not	show	up	at	all	because	the	date
filter	removes	that	row.
The	correct	solution	is	to	filter	the	“subtraction”	set	before	it	is	joined	with	the	set	from	which
you	are	subtracting.	You	do	that	by	using	a	SELECT	statement	in	the	FROM	clause	(also	called	a
derived	table	in	the	SQL	Standard)	to	provide	the	filtered	set.	Listing	4.40	shows	how.

Listing	4.40	Correctly	fetching	all	customers	and	a	subset	of	orders



Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
		OFil.OrderNumber,	OFil.OrderDate,	OFil.OrderTotal
FROM	Customers	AS	c
		LEFT	JOIN
				(SELECT	o.OrderNumber,	o.CustomerID,
							o.OrderDate,	o.OrderTotal
					FROM	Orders	AS	o
					WHERE	o.OrderDate	BETWEEN	CAST('2015-10-01'	AS	DATE)
							AND	CAST('2015-12-31'	AS	DATE))	AS	OFil
				ON	c.CustomerID	=	OFil.CustomerID;

Logically,	the	query	in	Listing	4.40	first	fetches	the	subset	of	orders	placed	between	the	two	dates
and	then	performs	the	join	with	the	Customers	table.	This	query	does	return	all	customers.
When	a	customer	did	not	place	an	order	in	the	specified	time	frame,	the	columns	from	the
OFiltered	subquery	are	null.	If	you	want	to	list	just	the	customers	who	did	not	place	an	order
in	the	last	quarter	of	2015,	simply	add	a	test	for	NULL	in	a	WHERE	clause	after	the	ON	join
specification.

Things	to	Remember
	Use	OUTER	JOIN	to	perform	a	Difference	operation	in	SQL.
	You	won’t	achieve	the	result	you	want	when	you	apply	a	filter	in	an	outer	WHERE	clause	to
the	“right”	side	of	a	“left”	join	or	vice	versa.
	To	correctly	subtract	a	filtered	subset,	you	must	apply	any	filter	before	the	database	system
performs	the	outer	join.



5.	Aggregation

From	its	inception,	the	SQL	Standard	has	supported	aggregating	data,	which	can	be	useful	for
generating	reports.	However,	when	you	start	aggregating	something,	it	is	no	longer	enough	just	to
say,	“I	want	data	from	this	and	that,	and	only	if	it’s	x,	y,	or	z.”	To	ask	for	totals	over	“this	and
that”	is	usually	insufficient;	typically,	we	want	to	see	“totals	per	customer,”	“count	of	orders	by
day,”	or	“average	sales	of	each	category	by	month.”	It	is	the	part	after	the	“per,”	“by,”	and	“of
each”	that	requires	additional	attention.	In	this	chapter	we	discuss	GROUP	BY	and	HAVING
clauses	that	deal	with	those	classes	of	questions.	You	will	also	learn	about	techniques	to	get	the
best	performance	from	your	aggregation	and	avoid	common	mistakes	made	with	aggregated
queries.	Finally,	the	SQL	standards	committee	has	been	expanding	the	standard	in	response	to
increased	demand	for	more	complex	aggregations,	and	their	answer	is	window	functions.	This	is
a	change	from	the	past	when	they	would	have	said,	“Just	take	data	out	of	the	database	and	dump	it
in	a	spreadsheet,	then	slice	and	dice	the	data.”	Nowadays,	with	the	explosive	increase	in	data
volume,	this	might	not	be	desirable	or	practical.	For	those	reasons,	it	behooves	you	to	know	the
ins	and	outs	of	aggregating	in	SQL.

Item	30:	Understand	How	GROUP	BY	Works
You	often	need	to	be	able	to	partition	your	data	into	groups	(where	a	group	is	a	set	of	rows	with
the	same	values	for	all	of	the	grouping	columns)	in	order	to	be	able	to	apply	some	type	of
aggregation	to	your	data.	You	can	do	this	using	a	GROUP	BY	clause	(often	accompanied	by	a
HAVING	clause).	Although	that	sounds	simple,	there	does	seem	to	be	confusion	about	how	to
create	queries	that	group	correctly.
The	general	syntax	for	an	SQL	SELECT	statement	is	shown	in	Listing	5.1	on	the	next	page.

Listing	5.1	Syntax	for	SQL	SELECT	statements

Click	here	to	view	code	image

SELECT	select_list
FROM	table_source
[WHERE	search_condition	]
[GROUP	BY	group_by_expression	]
[HAVING	search_condition	]
[ORDER	BY	order_expression	[	ASC	|	DESC	]	]

Note
Although	the	ISO	SQL	Standard	states	that	a	SELECT	without	FROM	is	not
standards-conforming	SQL,	many	DBMSs	do	allow	the	FROM	clause	to	be	optional.

Here	is	how	a	query	works:
1.	The	FROM	clause	generates	the	data	set.
2.	The	WHERE	clause	filters	the	data	set	generated	by	the	FROM	clause.



3.	The	GROUP	BY	clause	aggregates	the	data	set	that	was	filtered	by	the	WHERE	clause.
4.	The	HAVING	clause	filters	the	data	set	that	was	aggregated	by	the	GROUP	BY	clause.
5.	The	SELECT	clause	transforms	the	filtered	aggregated	data	set	(usually	through	the	use	of
aggregate	functions).

6.	The	ORDER	BY	clause	sorts	the	transformed	data	set.
Those	columns	included	in	the	GROUP	BY	clause	are	referred	to	as	the	grouping	columns.	It	is
not	actually	necessary	that	columns	included	in	the	GROUP	BY	clause	be	included	in	the
SELECT	clause	(although	not	showing	the	values	being	grouped	can	lead	to	odd-looking
results!).	You	cannot	use	aliases	in	a	GROUP	BY	clause.
Columns	that	are	in	the	SELECT	clause	and	do	not	appear	in	the	GROUP	BY	clause	must	have
aggregate	functions	applied	to	them	(although	computations	can	be	done	on	the	results	of	the
aggregation	or	constants).	Aggregate	functions	are	deterministic	functions	that	perform	a
calculation	on	a	set	of	values	and	return	a	single	value.	(See	the	sidebar	“Deterministic	versus
Nondeterministic”	in	Chapter	1,	“Data	Model	Design.”)	In	this	case,	the	sets	of	values	are	the
result	of	the	GROUP	BY	clause.	For	each	group,	there	can	be	one	or	more	aggregations,	which
act	upon	every	row	in	the	group.	(If	you	do	not	provide	any	aggregations,	GROUP	BY	acts
similarly	to	SELECT	DISTINCT.)
The	ISO	SQL	Standard	defines	a	large	number	of	aggregate	functions.	These	are	the	most
commonly	used	functions:

	COUNT()	counts	the	rows	in	the	set	or	group.
	SUM()	totals	the	values	in	the	set	or	group.
	AVG()	calculates	the	average	of	numerical	values	in	the	set	or	group.
	MIN()	finds	the	smallest	value	in	the	set	or	group.
	MAX()	finds	the	largest	value	in	the	set	or	group.
	VAR_POP()	and	VAR_SAMP()	return	the	population	variance	or	the	sample	variance	of
the	specified	column	within	the	set	or	group.
	STDDEV_POP()	and	STDDEV_SAMP()	return	the	population	standard	deviation	or	the
sample	standard	deviation	of	the	specified	column	within	the	set	or	group.

How	the	columns	appear	in	the	SELECT	clause	impacts	how	they	must	appear	in	the	GROUP	BY
clause	because	any	column	appearing	in	the	clause	that	is	not	used	in	an	aggregate	function	must
appear	in	the	GROUP	BY	clause.	Listing	5.2	gives	examples	of	groupings	that	are	consistent	with
how	the	columns	appear	in	the	SELECT	clause.

Listing	5.2	Valid	GROUP	BY	clauses

Click	here	to	view	code	image

SELECT	ColumnA,	ColumnB
FROM	Table1	GROUP	BY	ColumnA,	ColumnB;

SELECT	ColumnA	+	ColumnB



FROM	Table1	GROUP	BY	ColumnA,	ColumnB;

SELECT	ColumnA	+	ColumnB
FROM	Table1	GROUP	BY	ColumnA	+	ColumnB;

SELECT	ColumnA	+	ColumnB	+	constant
FROM	Table1	GROUP	BY	ColumnA,	ColumnB;

SELECT	ColumnA	+	ColumnB	+	constant
FROM	Table1	GROUP	BY	ColumnA	+	ColumnB;

SELECT	ColumnA	+	constant	+	ColumnB
FROM	Table1	GROUP	BY	ColumnA,	ColumnB;

However,	if	the	grouping	is	inconsistent	with	how	the	columns	appear	in	the	SELECT	clause,	the
grouping	is	not	allowed,	as	shown	in	Listing	5.3	on	the	next	page.

Listing	5.3	Invalid	GROUP	BY	clauses

Click	here	to	view	code	image

SELECT	ColumnA,	ColumnB
FROM	Table1	GROUP	BY	ColumnA	+	ColumnB;

SELECT	ColumnA	+	constant	+	ColumnB
FROM	Table1	GROUP	BY	ColumnA	+	ColumnB;

According	to	the	ISO	SQL	Standard,	the	GROUP	BY	clause	does	not	order	the	result	set.	You
must	use	an	ORDER	BY	clause	to	order	the	result	set.	In	practice,	though,	most	DBMSs	build	a
temporary	working	index	on	the	GROUP	BY,	so	the	results	end	up	sorted	by	the	columns	in	the
GROUP	BY	clause	in	the	absence	of	any	other	directive.	If	the	order	of	your	results	is	important,
always	include	an	ORDER	BY	clause	to	ensure	the	order	you	want.
You	should	filter	the	data	in	the	WHERE	clause	as	much	as	possible,	because	that	will	reduce	the
amount	of	data	that	needs	to	be	aggregated.	You	should	use	a	HAVING	clause	only	when	the
filtering	depends	on	the	results	of	the	aggregation,	such	as	HAVING	Count(*)	>	5	or
HAVING	Sum(Price)	<	100.
More	complex	grouping	operations	are	possible	using	the	features	of	ROLLUP,	CUBE,	and
GROUPING	SETS,	which	allow	you	to	group	the	data	selected	by	the	FROM	and	WHERE	clauses
separately	by	each	specified	grouping	set	and	compute	aggregates	for	each	group.	You	do	this	by
listing	a	series	of	one	or	more	columns	to	be	used	for	grouping.	An	empty	grouping	set	means	that
all	rows	are	aggregated	down	to	a	single	group,	similar	to	when	you	do	not	include	a	GROUP	BY
clause	on	an	aggregated	query.

Note
Some	SQL	products,	including	Access	and	MySQL,	do	not	support	grouping	with
ROLLUP	and	CUBE.

Consider	the	data	shown	in	Table	5.1	that	we	will	use	as	the	base	for	sample	queries.



Table	5.1	Sample	inventory	data

With	ROLLUP,	you	gain	additional	aggregates	for	each	set	of	columns	in	a	group.	You	would	use
the	query	shown	in	Listing	5.4	to	get	the	results	shown	in	Table	5.2.

Listing	5.4	ROLLUP	sample	query

Click	here	to	view	code	image

SELECT	Color,	Dimension,	SUM(Quantity)
FROM	Inventory
GROUP	BY	ROLLUP	(Color,	Dimension);

Table	5.2	Aggregated	inventory	with	ROLLUP	data

We	obtain	a	total	quantity	for	each	color	and	the	overall	quantity.	However,	we	do	not	have	any
data	on	the	total	quantity	by	dimension,	not	considering	color,	because	the	ROLLUP	works	from
right	to	left.	To	get	that	additional	data,	we	can	use	CUBE	instead.	Listing	5.5	demonstrates	the
statement	to	obtain	the	results	shown	in	Table	5.3.

Listing	5.5	CUBE	sample	query

Click	here	to	view	code	image

SELECT	Color,	Dimension,	SUM(Quantity)
FROM	Inventory
GROUP	BY	CUBE	(Color,	Dimension);



Table	5.3	Aggregated	inventory	with	CUBE	data

Finally,	if	you	wish	to	have	more	control	over	the	aggregates	and	what	additional	grouping	you
wish	to	include,	you	can	use	GROUPING	SETS.	You	can	use	the	SQL	statement	in	Listing	5.6	to
produce	the	results	shown	in	Table	5.4.	Note	that	the	SQL	statement	contains	three	separate
grouping	sets:	color,	dimension,	and	an	empty	set	(which	results	in	a	grand	total	being	produced).

Listing	5.6	GROUPING	SETS	sample	query

Click	here	to	view	code	image

SELECT	Color,	Dimension,	SUM(Quantity)
FROM	Inventory
GROUP	BY	GROUPING	SETS	((Color),	(Dimension),	());

Table	5.4	Data	results	from	the	GROUPING	SETS	sample	query

Observe	that	we	were	able	to	specify	exactly	which	aggregates	we	wanted	in	the	results,	unlike
with	ROLLUP	and	CUBE,	which	give	you	all	combinations	whether	you	want	them	or	not.	In
essence,	GROUPING	SETS,	as	well	as	ROLLUP	and	CUBE,	allow	you	to	do	in	one	query	what
would	have	taken	several	queries	UNIONed	together.	Listing	5.7	shows	how	you	would	have	to



code	a	query	using	a	simple	GROUP	BY	to	get	the	same	results	as	the	query	in	Listing	5.5.

Listing	5.7	Using	simple	GROUP	BY	instead	of	GROUPING	SETS

Click	here	to	view	code	image

SELECT	Color,	NULL	AS	Dimension,	SUM(Quantity)
FROM	Inventory
GROUP	BY	Color
UNION
SELECT	NULL,	Dimension,	SUM(Quantity)
FROM	Inventory
GROUP	BY	Size
UNION
SELECT	NULL,	NULL,	SUM(Quantity)
FROM	Inventory;

None	of	ROLLUP,	CUBE,	or	GROUPING	SETS	is	available	in	Microsoft	Access.	As	well,
Access	users	should	be	aware	that	the	query	builder	defaults	to	using	a	HAVING	clause	whenever
you	add	criteria	to	the	grid.	The	query	shown	in	Figure	5.1	results	in	the	SQL	shown	in	Listing
5.8.

Figure	5.1	Building	a	totals	query	in	Access

Listing	5.8	SQL	generated	for	the	query	in	Figure	5.1

Click	here	to	view	code	image

SELECT	O.ShipDate,	Sum(O.OrderTotal)	AS	SumOfOrderTotal
FROM	Orders	AS	O
GROUP	BY	O.ShipDate
HAVING	(((O.ShipDate)	>=	#9/1/2015#
		AND	(O.ShipDate)	<	#10/1/2015#));

You	need	to	separate	the	criteria	explicitly,	as	shown	in	Figure	5.2	on	the	next	page,	in	order	to



produce	the	more	desirable	SQL	statement	shown	in	Listing	5.9.

Listing	5.9	SQL	generated	for	the	query	in	Figure	5.2

Click	here	to	view	code	image

SELECT	o.ShipDate,	Sum(o.OrderTotal)	AS	SumOfOrderTotal
FROM	Orders	AS	o
WHERE	o.ShipDate	>=	#9/1/2015#
		AND	o.ShipDate	<	#10/1/2015#
GROUP	BY	o.ShipDate;

Figure	5.2	Preferred	approach	for	introducing	criteria	to	a	totals	query	in	Access

Things	to	Remember
	The	WHERE	clause	is	applied	before	aggregation	is	done.
	The	GROUP	BY	clause	aggregates	the	filtered	data	set.
	The	HAVING	clause	filters	the	aggregated	data	set.
	The	ORDER	BY	clause	sorts	the	transformed	data	set.
	Any	field	in	the	SELECT	clause	that	is	not	involved	in	an	aggregate	function	or	calculation
must	appear	in	the	GROUP	BY	clause.
	Using	ROLLUP,	CUBE,	and	GROUPING	SETS	gives	you	more	possible	combinations	in	a
single	query	in	lieu	of	creating	multiple	aggregated	queries	and	UNIONing	them.

Item	31:	Keep	the	GROUP	BY	Clause	Small
Up	to	the	SQL-92	Standard,	it	was	mandatory	that	all	columns	that	are	not	aggregated	appear	in



the	GROUP	BY	clause,	and	many	vendors	have	complied	with	this	stipulation.	Listing	5.10
demonstrates	a	possible	query	that	has	several	columns	added	to	the	GROUP	BY	clause.

Listing	5.10	An	aggregated	query	with	several	columns	in	the	GROUP	BY	clause,	compliant	with
the	SQL-92	Standard

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,
		c.CustLastName,	c.CustState,
		MAX(o.OrderDate)	AS	LastOrderDate,
		COUNT(o.OrderNumber)	AS	OrderCount,
		SUM(o.OrderTotal)	AS	TotalAmount
FROM	Customers	AS	c
		LEFT	JOIN	Orders	AS	o
				ON	c.CustomerID	=	o.CustomerID
GROUP	BY	c.CustomerID,	c.CustFirstName,
		c.CustLastName,	c.CustState;

This	query	will	run	on	any	DBMS.	However,	note	that	we	included	four	columns	in	the	GROUP
BY.	Consider	the	fact	that	we	grouped	on	CustomerID,	which	is	a	primary	key	of	the
Customers	table.	Because	a	primary	key	by	definition	must	be	unique,	it	would	not	matter	what
values	the	other	three	columns	contained.	They	could	be	identical	and	it	would	not	change	the
result	of	the	aggregations.
This	is	called	functional	dependency.	The	CustFirstName,	CustLastName,	and
CustState	columns	are	functionally	dependent	on	the	CustomerID.	This	was	recognized	in
SQL-99	and	onward.	So	the	query	in	Listing	5.11	actually	would	be	sufficient	to	satisfy	the
current	SQL	Standard.

Listing	5.11	Modified	version	of	Listing	5.10	that	complies	with	the	current	SQL	Standard

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,
		c.CustLastName,	c.CustState,
		MAX(o.OrderDate)	AS	LastOrderDate,
		COUNT(o.OrderNumber)	AS	OrderCount,
		SUM(o.OrderTotal)	AS	TotalAmount
FROM	Customers	AS	c
		LEFT	JOIN	Orders	AS	o
				ON	c.CustomerID	=	o.CustomerID
GROUP	BY	c.CustomerID;

However,	at	the	time	of	writing,	only	MySQL	and	PostgreSQL	permit	this	version.	Other	DBMS
products	reject	it,	returning	an	error	about	a	column	reference	that	is	not	aggregated	or	a	part	of	an
expression.	However,	we	can	rewrite	the	same	query	to	minimize	the	number	of	columns	in	the
GROUP	BY	by	using	subqueries,	as	Listing	5.12	on	the	next	page	illustrates.

Listing	5.12	Modified	version	of	Listing	5.10	that	is	portable

Click	here	to	view	code	image



SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
		c.CustState,	o.LastOrderDate,	o.OrderCount,	o.TotalAmount
FROM	Customers	AS	c
		LEFT	JOIN	(
				SELECT	t.CustomerID,	MAX(t.OrderDate)	AS	LastOrderDate,
						COUNT(t.OrderNumber)	AS	OrderCount,
						SUM(t.OrderTotal)	AS	TotalAmount
				FROM	Orders	AS	t
				GROUP	BY	t.CustomerID
				)	AS	o
				ON	c.CustomerID	=	o.CustomerID;

Note
Refer	to	Item	42,	“If	possible,	use	common	table	expressions	instead	of	subqueries,”
to	make	a	more	readable	version	of	the	query	shown	in	Listing	5.12.

The	rewritten	query	in	Listing	5.12	has	another	important	benefit:	it	is	now	easy	to	understand
what	we	are	actually	aggregating.	In	the	examples,	we	used	CustomerID,	a	primary	key,	but	we
do	not	necessarily	always	do	aggregation	grouping	on	primary	keys.	Consider	the	GROUP	BY
clause	shown	in	Listing	5.13.

Listing	5.13	A	complex	GROUP	BY	clause

Click	here	to	view	code	image

...
GROUP	BY	CustCity,	CustState,	CustZip,	YEAR(OrderDate),
		MONTH(OrderDate),	EmployeeID
...

Can	you	see	if	there	are	any	functionally	dependent	columns	in	this	GROUP	BY	that	could	be
removed?	Are	we	doing	aggregations	by	customers’	area?	Or	are	we	doing	aggregations	by
year/month	and	the	employee	who	took	the	orders?	Or	something	else?	Likely,	you	cannot;	you
would	need	to	analyze	the	entire	query	and	study	the	results	to	determine	what	is	essential	for
grouping.	The	end	result	is	that	the	query’s	intention	is	now	obfuscated	with	many	columns	that
were	included	only	for	details.	It	would	be	hard	to	analyze,	understand,	and	therefore	rewrite	the
query	if	you	needed	to	optimize	it	or	determine	what	indices	you	need	to	apply	to	the	underlying
tables.
For	this	reason,	it	is	a	very	good	habit	to	write	your	aggregating	queries	in	such	a	way	that	only
columns	that	you	actually	need	for	aggregating	data	correctly	are	present	in	the	GROUP	BY
clause.	If	you	need	additional	columns	for	detail,	push	them	out	to	an	outer	query	instead	of
adding	them	to	the	GROUP	BY	clause.

Things	to	Remember
	Several	DBMSs	require	that	you	add	nonaggregated	columns	to	GROUP	BY	even	though
the	current	SQL	Standard	no	longer	requires	this.
	Excessive	columns	in	GROUP	BY	can	negatively	impact	the	query’s	performance	and	also



make	it	hard	to	read,	understand,	and	rewrite.
	For	queries	that	need	both	aggregations	and	details,	do	all	aggregations	in	subqueries	first,
then	join	those	to	the	tables	to	retrieve	the	details.

Item	32:	Leverage	GROUP	BY/HAVING	to	Solve	Complex	Problems
Aggregate	functions	give	you	a	powerful	way	to	calculate	a	value	across	an	entire	set	or	across
groups	of	rows	within	the	set.	You	learned	in	Item	30,	“Understand	how	GROUP	BY	works,”
how	that	clause	defines	the	sets	of	data	to	be	aggregated.	In	this	item,	we	discuss	how	to	use
HAVING	to	further	refine	your	results.
Whereas	the	WHERE	clause	filters	rows	before	they	are	aggregated,	HAVING	lets	you	filter	the
aggregates	themselves.	You	may	want	only	the	aggregate	values	that	are	greater	than	or	less	than
some	literal	value.	But	the	real	power	of	HAVING	is	the	ability	to	compare	an	aggregate	result
for	a	group	with	another	aggregate	value.	You	can	use	this	to	solve	problems	like	these:

	Find	the	vendors	whose	average	delivery	time	exceeds	the	average	delivery	time	for	all
vendors.	(Pick	out	slow	vendors.)
	List	the	products	whose	total	sales	for	a	given	period	of	time	are	greater	than	the	average
sales	of	all	products	in	the	same	category.	(Find	best	sellers	by	category.)
	Display	customers	who	on	any	day	have	placed	orders	totaling	more	than	$1,000.	(List	big
spenders	each	day.)
	Calculate	what	percentage	of	orders	in	the	last	quarter	are	for	a	single	item.

Let’s	solve	the	first	two	problems	so	that	you	can	get	an	idea	of	how	to	leverage	the	HAVING
clause.	Figure	5.3	on	the	next	page	shows	the	tables	we	need	to	use.



Figure	5.3	Tables	in	a	typical	Sales	Orders	database

First,	let’s	find	the	slow	vendors.	We	assume	we	are	working	in	a	sales	database	that	has
Vendors	and	PurchaseOrders	tables.	In	the	PurchaseOrders	table,	there	is	a	foreign
key	(VendorID)	to	the	Vendors	table	and	OrderDate	and	DeliveryDate	columns	to
calculate	how	long	it	took	for	the	vendor	to	deliver	a	particular	order.	Listing	5.14	shows	the	SQL
to	find	the	answer	to	our	question	for	the	last	quarter	of	2015.

Note
We	use	Microsoft	SQL	Server	functions	to	perform	datetime	arithmetic.	Consult	the
Appendix,	“Date	and	Time	Types,	Operations,	and	Functions,”	or	your	database
documentation	for	equivalent	functions.

Listing	5.14	Find	vendors	whose	delivery	time	is	longer	than	the	average	for	Q4	2015

Click	here	to	view	code	image

SELECT	v.VendName,	AVG(DATEDIFF(DAY,	p.OrderDate,
				p.DeliveryDate))	AS	DeliveryDays
FROM	Vendors	AS	v
		INNER	JOIN	PurchaseOrders	AS	p
				ON	v.VendorID	=	p.VendorID
WHERE	p.DeliveryDate	IS	NOT	NULL
		AND	p.OrderDate	BETWEEN	'2015-10-01'	AND	'2015-12-31'
GROUP	BY	v.VendName
HAVING	AVG(DATEDIFF(DAY,	p.OrderDate,	p.DeliveryDate))	>	(



		SELECT	AVG(DATEDIFF(DAY,	p2.OrderDate,	p2.DeliveryDate))
		FROM	PurchaseOrders	AS	p2
		WHERE	p2.DeliveryDate	IS	NOT	NULL
				AND	p2.OrderDate	BETWEEN	'2015-10-01'	AND	'2015-12-31'
		);

After	running	a	query	to	display	the	average	delivery	time	in	that	quarter	as	14	days,	we	are	not
surprised	to	see	the	results	shown	in	Table	5.5.	Of	course,	slow	delivery	times	in	the	last	quarter
are	expected	in	the	United	States	because	of	the	Thanksgiving	and	Christmas	holidays.	That	is
why	most	retailers	order	stock	well	in	advance	of	those	holidays.	But	a	report	like	this	helps
identify	the	least-favored	vendors	during	that	time	period	if	we	need	to	place	an	urgent	order.

Table	5.5	Vendors	with	slow	delivery	times	in	Q4	2015

Note
The	results	for	DeliveryDays	may	vary	among	DBMSs.	They	also	implement	the
ROUND()	function	differently,	so	if	you	do	not	want	partial	dates,	you	need	to
format	the	average	results.

Note	that	in	most	implementations	(and	in	the	ISO	SQL	Standard)	it	is	illegal	to	reference	the
column	DeliveryDays,	calculated	in	the	SELECT	clause,	in	the	HAVING	clause,	even	though
the	expression	is	exactly	the	same.	You	must	repeat	the	expression.
Next,	let’s	list	the	products	whose	total	sales	for	a	given	period	of	time	are	greater	than	the
average	sales	of	all	products	in	the	same	category.	Listing	5.15	on	the	next	page	shows	how.

Listing	5.15	Finding	best	sellers	by	category	in	the	last	quarter	of	2015

Click	here	to	view	code	image

SELECT	c.CategoryDescription,	p.ProductName,
		SUM(od.QuotedPrice	*	od.QuantityOrdered)	AS	TotalSales
FROM	Products	AS	p
		INNER	JOIN	Order_Details	AS	od
				ON	p.ProductNumber	=	od.ProductNumber
		INNER	JOIN	Categories	AS	c
				ON	c.CategoryID	=	p.CategoryID
		INNER	JOIN	Orders	AS	o
				ON	o.OrderNumber	=	od.OrderNumber
WHERE	o.OrderDate	BETWEEN	'2015-10-01'	AND	'2015-12-31'
GROUP	BY	p.CategoryID,	c.CategoryDescription,	p.ProductName
HAVING	SUM(od.QuotedPrice	*	od.QuantityOrdered)	>	(



		SELECT	AVG(SumCategory)
		FROM	(
				SELECT	p2.CategoryID,
						SUM(od2.QuotedPrice	*	od2.QuantityOrdered)
								AS	SumCategory
				FROM	Products	AS	p2
						INNER	JOIN	Order_Details	AS	od2
								ON	p2.ProductNumber	=	od2.ProductNumber
						INNER	JOIN	Orders	AS	o2
								ON	o2.OrderNumber	=	od2.OrderNumber
				WHERE	p2.CategoryID	=	p.CategoryID
						AND	o2.OrderDate	BETWEEN	'2015-10-01'	AND	'2015-12-31'
				GROUP	BY	p2.CategoryID,	p2.ProductNumber
				)	AS	s
		GROUP	BY	CategoryID
		)
ORDER	BY	c.CategoryDescription,	p.ProductName;

The	problem	is	complicated	because	in	the	HAVING	clause,	you	first	must	calculate	the	sum	of
the	sales	by	product	within	the	category	of	the	current	group	and	then	calculate	the	average	of
those	sums—while	filtering	the	category	by	the	category	in	the	current	group	in	the	outer	query.	It
is	further	complicated	because	we	also	want	to	limit	the	data	to	a	specific	date	range,	so	we	must
include	a	join	to	the	Orders	table	to	get	the	date.	The	end	result	might	look	something	like	Table
5.6.



Table	5.6	Products	that	sold	more	than	the	category	average	in	the	fourth	quarter	of	2015

If	you	skip	forward	to	Item	42,	“If	possible,	use	common	table	expressions	instead	of
subqueries,”	you	will	find	that	you	could	further	simplify	this	query	by	using	a	common	table
expression	(CTE).	To	whet	your	appetite,	Listing	5.16	shows	the	query	again	using	a	CTE.

Listing	5.16	Simplifying	Listing	5.15	using	a	CTE

Click	here	to	view	code	image

WITH	CatProdData	AS	(
		SELECT	c.CategoryID,	c.CategoryDescription,
				p.ProductName,	od.QuotedPrice,	od.QuantityOrdered
		FROM	Products	AS	p
				INNER	JOIN	Order_Details	AS	od
						ON	p.ProductNumber	=	od.ProductNumber
				INNER	JOIN	Categories	AS	c
						ON	c.CategoryID	=	p.CategoryID
				INNER	JOIN	Orders	AS	o
						ON	o.OrderNumber	=	od.OrderNumber
		WHERE	o.OrderDate	BETWEEN	'2015-10-01'	AND	'2015-12-31'
		)
SELECT	d.CategoryDescription,	d.ProductName,
		SUM(d.QuotedPrice	*	d.QuantityOrdered)	AS	TotalSales
FROM	CatProdData	AS	d
GROUP	BY	d.CategoryID,	d.CategoryDescription,	d.ProductName
HAVING	SUM(d.QuotedPrice	*	d.QuantityOrdered)	>	(
		SELECT	AVG(SumCategory)
		FROM	(
				SELECT	d2.CategoryID,
						SUM(d2.QuotedPrice	*	d2.QuantityOrdered)
								AS	SumCategory
				FROM	CatProdData	AS	d2
				WHERE	d2.CategoryID	=	d.CategoryID
				GROUP	BY	d2.CategoryID,	d2.ProductName
				)	AS	s
		GROUP	BY	CategoryID
		)
ORDER	BY	d.CategoryDescription,	d.ProductName;

The	CTE	lets	you	define	the	complex	join	and	filter	on	dates	just	once,	then	reuse	it	in	both	the
outer	query	and	the	subquery.

Things	to	Remember
	Use	the	WHERE	clause	to	filter	rows	before	grouping;	use	HAVING	to	filter	rows	after
grouping.
	The	HAVING	clause	gives	you	the	ability	to	filter	aggregate	expressions.
	Even	though	you	have	given	a	name	to	an	aggregate	expression	in	the	SELECT	clause,	you
must	repeat	the	expression	if	you	want	to	use	it	in	the	HAVING	clause.	You	cannot	use	the
name	you	assigned	in	SELECT.
	You	can	compare	an	aggregate	to	either	a	simple	literal	value	or	a	value	returned	by	a
complex	aggregate	value	subquery.



Item	33:	Find	Maximum	or	Minimum	Values	Without	Using	GROUP	BY
You	can	solve	many	questions	using	GROUP	BY,	but	sometimes	too	much	data	gets	aggregated,
and	you	cannot	get	some	of	the	details	you	desired.	If	you	are	using	a	DBMS	that	does	not	support
window	functions	(see	Item	37,	“Know	how	to	use	window	functions”),	having	alternatives	that
allow	you	to	get	additional	columns	without	aggregating	those	columns	would	be	useful.	This	item
expands	on	the	ideas	introduced	in	Item	23,	“Find	non-matches	or	missing	records,”	to	make	it
possible	to	find	maximum	or	minimum	values	without	aggregating.
Consider	the	data	presented	in	Table	5.7.



Table	5.7	BeerStyles	table

If	you	wanted	to	know	the	highest	alcohol	level	for	each	category,	you	would	use	the	SQL
statement	shown	in	Listing	5.17.

Listing	5.17	SQL	statement	to	determine	the	highest	alcohol	level	per	category

Click	here	to	view	code	image

SELECT	Category,	MAX(MaxABV)	AS	MaxAlcohol
FROM	BeerStyles
GROUP	BY	Category;

You	would	get	the	results	shown	in	Table	5.8.

Table	5.8	Highest	alcohol	level	per	category

Note
As	was	mentioned	in	Item	30,	“Understand	how	GROUP	BY	works,”	depending	on
your	DBMS,	you	may	get	your	results	in	a	slightly	different	order,	because	no
ORDER	BY	clause	was	included.

However,	if	you	wanted	to	know	not	only	the	highest	alcohol	level	but	also	in	which	country	the



style	of	beer	that	has	that	level	originated,	you	cannot	just	extend	that	query	by	adding	Country
to	the	query,	as	shown	in	Listing	5.18.

Listing	5.18	Incorrect	SQL	statement	to	determine	the	originating	country	for	beer	with	the	highest
alcohol	level

Click	here	to	view	code	image

SELECT	Category,	Country,	MAX(MaxABV)	AS	MaxAlcohol
FROM	BeerStyles
GROUP	BY	Category,	Country;

The	query	in	Listing	5.18	will	return	the	data	shown	in	Table	5.9,	which	is	not	what	you	want.

Table	5.9	Incorrect	results	to	determine	the	originating	country	for	beer	with	the	highest
alcohol	level

A	different	approach	is	clearly	needed.
The	crux	of	the	matter	is	to	find,	for	each	category,	the	row	in	the	table	that	has	the	largest	value
for	MaxABV.	If	you	were	to	join	the	table	to	itself	so	that	you	could	look	at	each	row	and
compare	the	value	of	MaxABV	for	that	row	to	the	value	of	MaxABV	for	all	other	rows	for	that
category,	you	would	be	able	to	find	the	row	of	interest.	The	query	in	Listing	5.19	does	just	that.

Listing	5.19	Joining	the	BeerStyles	table	to	itself	to	compare	MaxABV	in	each	row

Click	here	to	view	code	image

SELECT	l.Category,	l.MaxABV	AS	LeftMaxABV,
		r.MaxABV	AS	RightMaxABV
FROM	BeerStyles	AS	l
		LEFT	JOIN	BeerStyles	AS	r
				ON	l.Category	=	r.Category



						AND	l.MaxABV	<	r.MaxABV;

The	query	compares	each	row	in	the	table	to	every	other	row	in	the	table	for	the	same
Category	and	returns	only	those	rows	that	have	a	larger	value	for	MaxABV.	Because	it	is	a	left
join,	it	returns	at	least	one	row	for	every	row	in	the	left-hand	table,	even	if	there	is	no	row	in	the
right-hand	table	that	has	a	larger	value	for	MaxABV.	Table	5.10	on	the	next	page	shows	part	of
the	results	of	the	query	in	Listing	5.19.

Table	5.10	Partial	results	of	comparing	MaxABV	in	each	row	to	all	other	rows

Note	the	two	rows	in	Table	5.10	with	the	null	values	in	the	RightMaxABV	column.	The	values
in	the	LeftMaxABV	column	are	the	maximum	alcohol	level	for	the	category.	Look	at	Table	5.8
to	confirm	that	the	highest	alcohol	level	for	British	or	Irish	Ales	is	12%,	and	for	European	Lagers
is	7.5%.
Now	that	we	have	a	way	to	identify	each	row	of	interest,	the	query	in	Listing	5.20	can	retrieve	the
other	columns	of	interest.

Listing	5.20	Returning	details	of	the	row	with	the	largest	value	of	MaxABV	for	each	category

Click	here	to	view	code	image

SELECT	l.Category,	l.Country,	l.Style,	l.MaxABV	AS	MaxAlcohol
FROM	BeerStyles	AS	l
		LEFT	JOIN	BeerStyles	AS	r
				ON	l.Category	=	r.Category



						AND	l.MaxABV	<	r.MaxABV
WHERE	r.MaxABV	IS	NULL
ORDER	BY	l.Category;

Table	5.11	shows	the	results	of	running	the	query	in	Listing	5.20.

Table	5.11	Details	of	the	highest	alcohol	level	per	category

Note	that	the	query	in	Listing	5.20	has	no	aggregate	function,	so	no	GROUP	BY	clause	is	needed.
Because	there	is	no	GROUP	BY	clause,	the	query	can	be	easily	joined	to	other	tables.
We	can	consider	the	first	expression	in	the	ON	clause,	l.Category	=	r.Category,	in
Listing	5.20	to	be	functionally	equivalent	to	the	GROUP	BY	Category	in	Listing	5.18,	and	it	is
how	we	define	the	“grouping”	in	our	new	query.	We	can	consider	the	second	expression,
l.MaxABV	<	r.MaxABV,	to	be	functionally	equivalent	to	MAX(MaxABV),	because	the
WHERE	r.MaxABV	IS	NULL	clause	allows	us	to	select	only	the	maximum	(or	minimum,	if
the	inequality	is	reversed).
The	entire	point	is	to	avoid	both	the	aggregate	and	the	GROUP	BY	that	can	be	resource	intensive.
You	could	also	solve	this	using	MaxAlcohol	=	(SELECT	MAX(MaxAlcohol)	FROM
BeerStyles	AS	b2	WHERE	b2.Category	=	BeerStyles.Category),	but	that
involves	not	only	an	aggregate	function	but	also	a	correlated	subquery.	As	you	will	learn	in	Item
41,	“Know	the	difference	between	correlated	and	non-correlated	subqueries,”	using	a	correlated
subquery	can	be	very	expensive	because	your	database	engine	must	execute	the	subquery	for
every	row.

Note
These	results	may	not	hold	if	you	are	working	with	large	tables	because	you	will	end
up	scanning	the	table	twice.	See	Item	44,	“Learn	to	use	your	system’s	query
analyzer,”	to	learn	how	to	analyze	your	situation	to	see	whether	the	approach
outlined	in	this	item	is	appropriate	for	your	situation.

Things	to	Remember
	The	“main”	table	needs	to	be	joined	to	itself	using	LEFT	JOIN.
	Every	column	that	would	have	been	included	in	the	GROUP	BY	clause	becomes	part	of	the
ON	clause,	using	an	equals	(=)	comparison.
	The	column	that	would	have	been	included	in	the	MAX()	(or	MIN())	clause	becomes	part



of	the	ON	clause,	using	less	than	(<)	or	greater	than	(>).
	The	columns	included	in	the	ON	clause	should	be	indexed	for	better	performance,
especially	when	you	start	to	deal	with	larger	data	sets.

Item	34:	Avoid	Getting	an	Erroneous	COUNT()	When	Using	OUTER	JOIN
Sometimes	the	simplest	of	mistakes	in	your	SQL	code	can	lead	to	an	incorrect	answer.	Because	it
is	a	simple	problem	to	count	rows	in	a	set,	let’s	use	a	simple	database.	Figure	5.4	shows	the
design	of	a	database	to	keep	track	of	recipes	that	you	might	use	at	home	or	a	chef	might	use	in	a
restaurant.

Figure	5.4	The	design	of	a	simple	Recipes	database

A	simple	problem	would	be	to	list	all	classes	of	recipes	and	get	a	count	of	the	number	of	recipes
in	each	class.	We	want	all	classes	of	recipes,	so	it	would	be	wise	to	do	an	outer	join	to	make	sure
we	get	them	all.	Listing	5.21	shows	a	first	attempt	to	solve	the	problem.

Listing	5.21	Counting	recipes	in	all	recipe	classes

Click	here	to	view	code	image

SELECT	Recipe_Classes.RecipeClassDescription,
		COUNT(*)	AS	RecipeCount
FROM	Recipe_Classes
		LEFT	OUTER	JOIN	Recipes
				ON	Recipe_Classes.RecipeClassID	=	Recipes.RecipeClassID
GROUP	BY	Recipe_Classes.RecipeClassDescription;

The	result	might	look	something	like	Table	5.12.



Table	5.12	Counting	recipes	in	each	recipe	class

It	looks	like	we	have	at	least	one	recipe	per	recipe	class.	But	looks	can	be	deceiving	because	the
answer	is	actually	wrong.	When	you	use	COUNT(*),	you	are	counting	the	rows	returned	in	each
group.	Because	we	did	a	left	outer	join,	we	will	get	at	least	one	row	for	each	recipe	class,	even
though	null	values	will	be	returned	in	the	column(s)	from	the	Recipes	table	when	no	recipes
exist	for	a	recipe	class.	(See	also	Item	36,	“Use	DISTINCT	to	get	distinct	counts.”)
One	solution	is	to	count	one	of	the	columns	returned	from	the	Recipes	table.	When	you	use	a
column	name	instead	of	*,	the	database	engine	ignores	rows	containing	a	null	value	in	that
column.	Listing	5.22	shows	the	correct	way	to	solve	the	problem.

Listing	5.22	Counting	recipes	in	all	recipe	classes	correctly

Click	here	to	view	code	image

SELECT	Recipe_Classes.RecipeClassDescription,
		COUNT(Recipes.RecipeClassID)	AS	RecipeCount
FROM	Recipe_Classes
		LEFT	OUTER	JOIN	Recipes
				ON	Recipe_Classes.RecipeClassID	=	Recipes.RecipeClassID
GROUP	BY	Recipe_Classes.RecipeClassDescription;

Now	we	get	the	correct	answer—there	are	no	Soup	recipes—as	shown	in	Table	5.13.



Table	5.13	Correct	count	of	recipes	in	each	recipe	class

Is	using	LEFT	OUTER	JOIN	and	GROUP	BY	the	most	efficient	way	to	solve	this	problem?
Maybe	not!	Because	there	are	likely	to	be	hundreds	if	not	thousands	of	rows	for	each	recipe	class,
but	there	are	only	a	few	different	classes	of	recipes,	using	a	subquery	to	get	the	count	could	be
more	efficient.
Rather	than	fetch	all	the	rows	in	the	Recipes	table,	group	them,	and	then	count	them,	a	simple
probe	using	a	subquery	could	be	faster.	Especially	if	you	do	a	count	on	an	indexed	field,	the
database	engine	is	likely	to	count	index	entries,	not	the	actual	rows.	Listing	5.23	shows	the
alternative	solution.	The	result	is	exactly	the	same	as	we	saw	in	Table	5.13.

Listing	5.23	Using	a	subquery	to	count	recipes	in	each	recipe	class

Click	here	to	view	code	image

SELECT	Recipe_Classes.RecipeClassDescription,	(
				SELECT	COUNT(Recipes.RecipeClassID)
				FROM	Recipes
				WHERE	Recipes.RecipeClassID	=	Recipe_Classes.RecipeClassID
				)	AS	RecipeCount
FROM	Recipe_Classes;

To	verify	our	supposition	that	the	subquery	might	be	faster	(even	though	it	is	a	correlated
subquery),	we	can	put	both	queries	into	a	query	window	in	SQL	Server	and	ask	it	to	display	the
estimated	execution	plan.	(For	more	details	about	using	a	query	analyzer,	see	Item	44,	“Learn	to
use	your	system’s	query	analyzer.”	To	learn	more	about	correlated	versus	non-correlated
subqueries,	see	Item	41,	“Know	the	difference	between	correlated	and	non-correlated
subqueries.”)	Figure	5.5	shows	the	result.



Figure	5.5	Analyzing	the	two	queries	in	SQL	Server

Even	with	a	relatively	small	amount	of	data,	we	can	see	that	using	GROUP	BY	is	more	than	twice
as	expensive	(71%	for	GROUP	BY	versus	29%	for	the	subquery)	as	using	the	subquery.
However,	we	have	demonstrated	this	only	for	the	SQL	Server	database	engine;	other	engines
could	yield	the	opposite	results.	Never	be	afraid	to	explore	alternatives	if	you	want	to	find	a	more
efficient	way	to	solve	a	problem	in	SQL.	To	learn	more	about	testing	the	efficiency	of	your	SQL,
read	Chapter	7,	“Getting	and	Analyzing	Metadata.”



Things	to	Remember
	Use	COUNT(*)	to	count	all	rows,	including	ones	with	null	values.
	Use	COUNT(<column	name>)	to	count	only	the	rows	where	the	column	value	is	not
NULL.
	Sometimes	a	subquery,	even	a	correlated	subquery,	can	be	more	efficient	than	using	a
GROUP	BY.

Item	35:	Include	Zero-Value	Rows	When	Testing	for	HAVING	COUNT(x)	<
Some	Number
In	this	item,	we	show	you	how	to	include	rows	with	zero	value	when	applying	a	HAVING
predicate	that	specifies	a	count	less	than	some	number.
Let’s	use	the	same	little	Recipes	database	from	Item	34,	“Avoid	getting	an	erroneous	COUNT()
when	using	OUTER	JOIN.”	Figure	5.6	on	the	next	page	shows	the	design.

Figure	5.6	Design	of	a	simple	Recipes	database

Suppose	you	want	to	find	the	main	courses	that	have	fewer	than	three	spices.	We	need	to	filter
both	the	recipe	class	description	on	“Main	course”	and	the	ingredient	class	description	on
“Spice.”	Listing	5.24	shows	our	first	attempt.

Listing	5.24	Attempting	to	find	main	courses	with	fewer	than	three	spices

Click	here	to	view	code	image

SELECT	Recipes.RecipeTitle,
		COUNT(Recipe_Ingredients.RecipeID)	AS	IngredCount
FROM	Recipe_Classes
		INNER	JOIN	Recipes
				ON	Recipe_Classes.RecipeClassID	=	Recipes.RecipeClassID
		INNER	JOIN	Recipe_Ingredients
				ON	Recipes.RecipeID	=	Recipe_Ingredients.RecipeID
		INNER	JOIN	Ingredients
				ON	Recipe_Ingredients.IngredientID	=
						Ingredients.IngredientID
		INNER	JOIN	Ingredient_Classes



				ON	Ingredients.IngredientClassID	=
						Ingredient_Classes.IngredientClassID
WHERE	Recipe_Classes.RecipeClassDescription	=	'Main	course'
		AND	Ingredient_Classes.IngredientClassDescription	=	'Spice'
GROUP	BY	Recipes.RecipeTitle
HAVING	COUNT(Recipe_Ingredients.RecipeID)	<	3;

The	result	looks	like	Table	5.14.

Table	5.14	Main	courses	with	three	or	fewer	spices

That	is	not	the	correct	answer	because	we	failed	to	do	a	left	join	to	the
Recipe_Ingredients	table,	so	we	will	not	get	any	zero	counts.	Listing	5.25	shows	the	same
query,	but	this	time	using	LEFT	JOIN.

Listing	5.25	Second	attempt	to	find	main	courses	with	fewer	than	three	spices

Click	here	to	view	code	image

SELECT	Recipes.RecipeTitle,
		COUNT(ri.RecipeID)	AS	IngredCount
FROM	Recipe_Classes
		INNER	JOIN	Recipes
				ON	Recipe_Classes.RecipeClassID	=	Recipes.RecipeClassID
		LEFT	OUTER	JOIN	(
				SELECT	Recipe_Ingredients.RecipeID,
						Ingredient_Classes.IngredientClassDescription
				FROM	Recipe_Ingredients
						INNER	JOIN	Ingredients
								ON	Recipe_Ingredients.IngredientID	=
										Ingredients.IngredientID
						INNER	JOIN	Ingredient_Classes
								ON	Ingredients.IngredientClassID	=
										Ingredient_Classes.IngredientClassID
				)	AS	ri
				ON	Recipes.RecipeID	=	ri.RecipeID
WHERE	Recipe_Classes.RecipeClassDescription	=	'Main	course'
		AND	ri.IngredientClassDescription	=	'Spice'
GROUP	BY	Recipes.RecipeTitle
HAVING	COUNT(ri.RecipeID)	<	3;

Note
We	used	a	subquery	on	the	right	side	of	the	outer	join	to	make	the	syntax	compatible
with	most	database	implementations.	For	example,	if	we	simply	replace	INNER
with	LEFT	OUTER	in	Microsoft	Access,	the	query	would	generate	an	“ambiguous
outer	join”	error.



That	does	not	work	either,	because	filtering	one	of	the	tables	on	the	“right”	side	of	a	“left”	join
negates	the	effect	of	the	outer	join.	The	second	query	returns	the	exact	same	results	as	the	first.
(See	also	Item	29,	“Correctly	filter	the	‘right’	side	of	a	‘left’	join.”)	Listing	5.26	on	the	next	page
gets	it	right	by	moving	the	filter	into	a	subquery	before	doing	the	join.

Listing	5.26	Correctly	finding	main	courses	that	have	fewer	than	three	spices

Click	here	to	view	code	image

SELECT	Recipes.RecipeTitle,
		COUNT(ri.RecipeID)	AS	IngredCount
FROM	Recipe_Classes
		INNER	JOIN	Recipes
				ON	Recipe_Classes.RecipeClassID	=	Recipes.RecipeClassID
		LEFT	OUTER	JOIN	(
				SELECT	Recipe_Ingredients.RecipeID,
						Ingredient_Classes.IngredientClassDescription
				FROM	Recipe_Ingredients
						INNER	JOIN	Ingredients
								ON	Recipe_Ingredients.IngredientID	=
										Ingredients.IngredientID
						INNER	JOIN	Ingredient_Classes
								ON	Ingredients.IngredientClassID	=
										Ingredient_Classes.IngredientClassID
				WHERE
					Ingredient_Classes.IngredientClassDescription	=	'Spice'
				)	AS	ri
				ON	Recipes.RecipeID	=	ri.RecipeID
WHERE	Recipe_Classes.RecipeClassDescription	=	'Main	course'
GROUP	BY	Recipes.RecipeTitle
HAVING	COUNT(ri.RecipeID)	<	3;

That	finally	gets	us	the	correct	answer,	shown	in	Table	5.15.

Table	5.15	Main	courses	with	three	or	fewer	spices

Frankly,	we	cannot	imagine	an	Irish	Stew	being	made	with	no	salt	and	pepper,	but	then	we	would
not	have	an	interesting	example.	In	this	case,	we	discovered	that	we	left	out	those	critical
ingredients,	so	we	can	fix	the	ingredient	list.
Note	that	if	we	had	made	the	mistake	illustrated	in	Item	34	by	using	COUNT(*)	instead	of
COUNT(RI.RecipeID),	we	would	have	seen	Irish	Stew,	but	with	an	incorrect	count	of	1.	As
you	learned	in	Item	34	and	this	item,	you	have	to	be	careful	when	dealing	with	zero	values	when
you	try	to	use	COUNT()	or	HAVING	less	than	some	number.
Finally,	there	is	also	the	alternative	of	moving	the	clause	AND



ri.IngredientClassDescription	=	'Spice'	from	Listing	5.25	out	of	the	WHERE
clause	and	into	the	ON	predicate	of	the	JOIN	clause.	This	will	also	yield	the	same	results	we	got
from	Listing	5.26	because	conditions	defined	in	the	ON	predicate	are	filtered	before	joining	to	the
outer	table	reference.	The	WHERE	clause	applies	its	predicates	after	the	joins,	which	is	why	it	is
“too	late”	and	thus	we	get	incorrect	results.

Things	to	Remember
	Looking	for	a	count	of	zero	will	not	work	if	you	use	INNER	JOIN.
	If	you	filter	the	“right”	side	of	a	“left”	join,	you	get	the	equivalent	of	an	inner	join.	Push	the
filter	into	a	subquery	or	use	the	ON	predicate	to	filter	the	“right”	side.
	Looking	for	a	count	of	zero	when	you	expect	a	count	of	1	or	more	can	help	you	identify
problems	in	your	data.

Item	36:	Use	DISTINCT	to	Get	Distinct	Counts
The	purpose	of	the	COUNT()	aggregate	function	should	be	obvious	from	its	name.	In	this	item,
we	take	a	closer	look	at	some	nuances	the	function	provides.
There	are	three	different	ways	in	which	the	COUNT()	aggregate	function	can	be	used	to	return	the
number	of	items	in	a	group:

	COUNT(*)	returns	the	number	of	items	in	a	group,	including	null	values	and	duplicates.
	COUNT(ALL	<expression>)	(which	can	be	shortened	to	COUNT(<expression>)	because
ALL	is	the	default)	evaluates	an	expression	for	each	row	in	a	group	and	returns	the	number
of	non-null	values.
	COUNT(DISTINCT	<expression>)	evaluates	an	expression	for	each	row	in	a	group	and
returns	the	number	of	unique,	non-null	values.

Usually	<expression>	is	a	field	name,	but	it	can	be	any	combination	of	symbols	and	operators	that
evaluates	to	obtain	a	single	data	value.
Consider	the	data	shown	in	Table	5.16	on	the	next	page.





Table	5.16	Sample	data

You	can	use	COUNT(*)	to	determine	that	there	are	25	rows	in	the	table	shown	in	Table	5.16.
Because	all	of	the	rows	in	that	table	have	values	for	CustomerID,	using
COUNT(CustomerID)	would	yield	the	same	result	of	25.	However,	using
COUNT(EmployeeID)	would	yield	20,	because	there	are	five	rows	with	a	null	value	for
EmployeeID.
You	can	use	COUNT(DISTINCT	CustomerID)	to	determine	that	there	are	18	different
values	for	CustomerID	in	those	25	rows	of	data.
As	mentioned	previously,	you	are	not	limited	to	simply	a	column	name	as	a	parameter	for	the
COUNT()	function.	Let’s	say	you	want	to	know	how	many	of	the	orders	exceeded	$1,000.00.	You
could	run	the	query	in	Listing	5.27	to	get	the	result	of	18,	or	you	could	use	COUNT(CASE	WHEN
OrderTotal	>	1000	THEN	CustomerID	END),	because	the	CASE	function	returns	the
CustomerID	field	for	only	those	rows	where	OrderTotal	is	greater	than	$1,000.00	and
returns	a	null	value	in	the	other	cases.

Listing	5.27	Possible	query	for	determining	how	many	orders	exceed	$1,000.00

Click	here	to	view	code	image

SELECT	COUNT(*)	AS	TotalOrders
FROM	Orders
WHERE	OrderTotal	>	1000;

It	is	even	possible	to	use	DISTINCT	in	conjunction	with	the	CASE	statement.	You	could	use
COUNT(DISTINCT	CASE	WHEN	OrderTotal	>	1000	THEN	CustomerID	END)
to	determine	that	there	are	15	different	customers	in	that	group	of	18	orders	exceeding	$1,000.00
(1001,	1002,	1003,	1004,	1009,	1011,	1012,	1013,	1014,	1017,	1018,	1020,	1024,	1026,	and
1027).
If	you	run	a	single	query	with	multiple	counts,	as	shown	in	Listing	5.28,	only	one	pass	needs	to	be
made	through	the	table.

Listing	5.28	Multiple	counts	in	a	single	query

Click	here	to	view	code	image

SELECT	COUNT(*)	AS	TotalRows,
		COUNT(CustomerID)	AS	TotalOrdersWithCustomers,
		COUNT(EmployeeID)	AS	TotalOrdersWithEmployees,
		COUNT(DISTINCT	CustomerID)	AS	TotalUniqueCustomers,
		COUNT(CASE	WHEN	OrderTotal	>	1000
				THEN	CustomerID	END)	AS	TotalLargeOrders,
		COUNT(DISTINCT	CASE	WHEN	OrderTotal	>	1000
				THEN	CustomerID	END)	AS	TotalUniqueCust_LargeOrders
FROM	OrdersTable;

Running	the	query	shown	in	Listing	5.28	yields	the	results	shown	in	Table	5.17.



Table	5.17	Results	of	running	multiple	counts

Note
The	COUNT()	function	returns	an	int	value,	meaning	it	is	limited	to	values	of	up	to
2,147,483,647.	Both	DB2	and	SQL	Server	have	a	COUNT_BIG()	function	that
returns	a	bigint	value,	which	allows	values	of	up	to	9,223,372,036,854,775,807.
Access	does	not	support	using	DISTINCT	in	conjunction	with	COUNT().

Things	to	Remember
	Use	the	appropriate	form	of	the	COUNT()	function	to	simplify	calculations.
	Consider	using	functions	as	the	argument	for	the	COUNT()	function	in	order	to	be	able	to
combine	calculations	without	needing	a	WHERE	clause.

Item	37:	Know	How	to	Use	Window	Functions
One	area	that	used	to	be	a	major	weakness	in	SQL	standards	prior	to	the	SQL:2003	Standard	was
the	ability	to	work	with	data	where	the	results	depended	on	adjacent	rows.	In	the	prior	standards,
SQL	had	no	conception	of	“adjacent	rows.”	In	theory,	the	order	of	the	rows	should	not	matter	as
long	they	match	the	given	filters.	The	ORDER	BY	clause	has	long	been	considered	to	be	more	for
presentation	than	as	truly	a	part	of	relational	operations.	As	a	consequence,	certain	classes	of
operations	were	very	difficult	to	perform	in	SQL	alone.	A	prime	example	is	generating	a	running
sum,	illustrated	in	Table	5.18.

Table	5.18	Example	of	running	sums



Prior	to	the	SQL:2003	Standard,	such	queries	would	be	very	difficult	to	write	and,	even	if	they
could	be	performed	at	all,	likely	very	inefficient	and	slow.	The	SQL:2003	Standard	introduced
the	concept	of	a	window	function	where	“window”	refers	to	a	set	of	rows	that	surround	a
considered	row,	either	preceding	or	following	that	row.	Many	of	the	aggregate	functions	with
which	you	are	familiar,	such	as	SUM(),	COUNT(),	AVG(),	and	others,	can	be	used	as	window
functions.	Additionally,	the	SQL:2003	Standard	introduced	new	functions	such	as
ROW_NUMBER()	and	RANK(),	which	must	be	windowed.	Several	DBMS	products	have
already	implemented	at	least	some	of	those	in	their	current	versions;	consult	the	documentation	to
determine	what	window	functions,	if	any,	are	available	to	you.
The	query	shown	in	Listing	5.29	can	be	used	to	write	a	running	sum	as	demonstrated	in	Table
5.18.

Listing	5.29	Query	to	perform	a	running	sum

Click	here	to	view	code	image

SELECT
		o.OrderNumber,	o.CustomerID,	o.OrderTotal,
		SUM(o.OrderTotal)	OVER	(
				PARTITION	BY	o.CustomerID
				ORDER	BY	o.OrderNumber,	o.CustomerID
		)	AS	TotalByCustomer,
		SUM(o.OrderTotal)	OVER	(
				ORDER	BY	o.OrderNumber
		)	AS	TotalOverall
FROM	Orders	AS	o
ORDER	BY	o.OrderNumber,	o.CustomerID;

There	are	several	things	to	note	in	Listing	5.29,	starting	with	the	OVER	clause.	This	indicates	that
we	want	to	use	a	window	over	the	SUM()	expression.	We	used	two	predicates	within	the	OVER
clause:	PARTITION	BY	and	ORDER	BY.	The	PARTITION	BY	predicate	specifies	how	the
window	should	be	divided.	If	you	omit	it,	your	database	system	applies	the	function	over	the
entire	result	set.	For	the	TotalByCustomer,	we	specified	o.CustomerID,	meaning	that	the
SUM()	should	be	applied	over	the	range	of	rows	where	the	o.CustomerID	values	are	the
same.	This	is	conceptually	similar	to	the	GROUP	BY	clause.	However,	a	major	difference	is	that
a	PARTITION	predicate	applies	grouping	only	to	the	window	created	for	SUM()	and	is
independent,	whereas	a	GROUP	BY	would	apply	grouping	over	the	entire	query	and	place
additional	constraints	upon	the	query	as	discussed	in	Item	30,	“Understand	how	GROUP	BY
works,”	such	as	disallowing	a	column	reference	that	is	neither	grouped	nor	aggregated.
Note	that	TotalOverall	does	not	have	a	PARTITION	BY	predicate.	This	is	functionally
equivalent	to	grouping	over	the	entire	set	of	rows	returned	by	the	query,	just	like	when	you	omit
the	GROUP	BY	clause	from	the	statement.
The	next	part	is	the	ORDER	BY	predicate.	As	discussed	at	the	start	of	this	item,	the	results	are
sensitive	to	the	order	in	which	the	rows	are	returned.	In	the	example	of	a	running	sum,	this
describes	the	sequence	of	the	rows	that	should	be	read	into	the	window.
Be	aware	that	in	all	cases,	the	predicates	defined	for	each	OVER	clause	can	be	different,	and	each



would	apply	only	to	the	aggregate	function	independently	of	one	another.	So	it	is	valid	to	write	a
statement	like	the	one	in	Listing	5.30.

Listing	5.30	Query	with	different	predicates	for	each	OVER	clause

Click	here	to	view	code	image

SELECT
		t.AccountID,	t.Amount,
		SUM(t.Amount)	OVER	(
				PARTITION	BY	t.AccountID
				ORDER	BY	t.TransactionID	DESC
		)	-	t.Amount	AS	TotalUnspent,
		SUM(t.Amount)	OVER	(
				ORDER	BY	t.TransactionID
		)	AS	TotalOverall
FROM	Transactions	AS	t
ORDER	BY	t.TransactionID;

The	query	could	be	used	for	an	expense	report	to	report	both	overall	spending	and	how	much	of
the	actual	expenses	were	used	up	after	each	expenditure.	In	order	to	represent	the	unspent
expenses,	we	have	to	use	the	reverse	order	on	t.TransactionID	for	TotalUnspent.
Table	5.19	illustrates	how	the	data	would	be	formed	by	the	query	in	Listing	5.30.

Table	5.19	Data	returned	by	the	query	in	Listing	5.30

Without	the	window	functions,	the	query	needed	to	produce	the	same	result	as	Table	5.19	would
likely	have	required	several	nested	SELECT	statements	in	order	to	represent	each	window
independently.	Because	the	window	function	allows	you	to	specify	the	PARTITION	BY	and
ORDER	BY	for	each	OVER	clause,	you	now	can	write	a	single	statement	that	provides
aggregations	over	a	different	range	of	data	without	having	to	adhere	to	the	statement-level	GROUP
BY	clause.



In	Item	38,	“Create	row	numbers	and	rank	a	row	over	other	rows,”	you	will	see	how	to	deal	with
new	aggregate	functions	that	must	be	windowed,	and	in	Item	39,	“Create	a	moving	aggregate,”
you	will	get	into	more	advanced	options	for	describing	the	size	of	the	window.

Things	to	Remember
	Window	functions	are	“aware”	of	the	surrounding	rows,	which	makes	it	easier	to	create
running	or	moving	aggregations	than	with	the	traditional	aggregation	functions	and
statement-level	grouping.
	Window	functions	are	great	alternatives	for	aggregations	that	need	to	be	applied	over	data
differently	and/or	independently.
	Window	functions	can	be	used	with	existing	aggregate	functions	such	as	SUM(),
COUNT(),	and	AVG()	and	are	enabled	by	including	an	OVER	clause.
	The	PARTITION	BY	predicate	can	be	used	to	specify	that	grouping	must	be	applied	to	the
aggregation	expression.
	The	ORDER	BY	predicate	is	often	important	as	it	influences	how	subsequent	rows	will
have	their	aggregate	expression	calculated.

Item	38:	Create	Row	Numbers	and	Rank	a	Row	over	Other	Rows
In	Item	37,	“Know	how	to	use	window	functions,”	we	considered	how	window	functions	help	us
with	familiar	aggregate	functions	such	as	SUM().	However,	there	are	also	new	aggregate
functions	such	as	ROW_NUMBER()	and	RANK()	that	must	have	an	OVER	clause	applied.	This	is
logical,	because	you	really	cannot	rank	anything	without	defining	what	should	rank	higher	than
what.	Let’s	look	at	how	we	can	use	both	functions	in	Listing	5.31	on	the	next	page.

Listing	5.31	Query	with	ROW_NUMBER()	and	RANK()	functions

Click	here	to	view	code	image

SELECT
		ROW_NUMBER()	OVER	(
				ORDER	BY	o.OrderDate,	o.OrderNumber
				)	AS	OrderSequence,
		ROW_NUMBER()	OVER	(
				PARTITION	BY	o.CustomerID
				ORDER	BY	o.OrderDate,	o.OrderNumber
				)	AS	CustomerOrderSequence,
		o.OrderNumber,	o.CustomerID,	o.OrderDate,	o.OrderAmount,
		RANK()	OVER	(
				ORDER	BY	o.OrderTotal	DESC
				)	AS	OrderRanking,
		RANK()	OVER	(
				PARTITION	BY	o.CustomerID
				ORDER	BY	o.OrderTotal	DESC
				)	AS	CustomerOrderRanking
FROM	Orders	AS	o
ORDER	BY	o.OrderDate;

Table	5.20	illustrates	the	results	that	the	query	in	Listing	5.31	returns.



Table	5.20	Hypothetical	data	returned	by	the	query	in	Listing	5.31

Note
Microsoft	SQL	Server	may	return	ranks	differently	from	IBM	DB2,	Oracle	Database,



and	PostgreSQL.	The	data	returned	by	GitHub	scripts	for	those	DBMSs	will	be
different	from	what	is	shown	in	Table	5.20.

As	discussed	in	Item	37,	the	PARTITION	BY	predicate	influences	the	effective	grouping	of	the
ranking	functions.	With	OrderSequence,	the	window	was	applied	to	the	entire	set,	whereas
CustomerSequence	was	grouped	by	CustomerID,	which	allows	us	to	“restart”	the
ROW_NUMBER()’s	sequencing	and	thus	identify	which	order	was	the	customer’s	first	order,
second,	and	so	on	in	the	customer	rank.
With	the	RANK()	function,	we	did	not	use	the	same	ORDER	BY	predicate;	we	wanted	to	rank
orders	based	on	the	amount	(e.g.,	the	largest	order	in	terms	of	amount	paid),	and	that	is	how	we
influence	which	row	gets	ranked	first,	second,	and	so	forth.	As	with	the	ROW_NUMBER(),	we
can	partition	the	ranking	by	groups,	allowing	us	to	see	which	order	for	that	particular	customer
was	its	largest	order	placed.	With	CustomerOrderRanking,	we	had	partitioning	so	we
could	see	what	order	was	the	customer’s	largest	order	and	so	on.
It	is	also	important	to	note	how	the	RANK()	function	behaves	when	there	are	ties.	For
OrderRanking,	OrderNumber	2	and	10	are	tied,	as	are	9	and	3.	Consequently,	we	have
gaps	in	the	RANK()’s	numbering.	We	are	missing	rank	numbers	7	and	9	because	each	pair	of
orders	shares	ranks	6	and	8,	respectively.	If	you	would	rather	not	have	gaps	in	your	ranking,	you
would	use	DENSE_RANK()	instead.	Alternatively,	you	could	write	your	query’s	OVER	clause	so
that	ties	are	not	possible.
The	other	thing	to	note	about	those	functions	is	that	the	ORDER	BY	predicate	is	required,	which
is	logical	because	the	functions	could	give	different	answers	if	they	were	given	different	columns
to	sort	upon.

Things	to	Remember
	ROW_NUMBER(),	RANK(),	and	other	ranking	functions	must	always	be	windowed	and
therefore	cannot	appear	without	a	corresponding	OVER	clause.
	Give	consideration	to	how	ties	should	be	handled	with	ranking	functions.	If	you	need
contiguous	ranking,	you	should	use	DENSE_RANK()	instead.
	The	ORDER	BY	predicate	is	mandatory	for	this	class	of	functions	because	it	influences
how	the	results	will	be	sequenced	or	ranked.

Item	39:	Create	a	Moving	Aggregate
The	samples	in	Items	37,	“Know	how	to	use	window	functions,”	and	38,	“Create	row	numbers
and	rank	a	row	over	other	rows,”	used	the	default	bounding	behavior	for	the	window	functions.
However,	to	create	a	moving	aggregate	expression,	the	default	bounding	behavior	will	not	work.
Often,	companies	need	to	see	performance	compared	within	a	smaller	range	than	the	entire	set.
For	instance,	a	sales	report	is	usually	more	useful	when	we	have	an	average	of	sales	for	only	a
three-month	period	as	opposed	to	the	entire	company’s	history.	Or	a	company	with	seasonal
cycles	might	want	to	compare	sales	in	one	month	to	those	in	the	same	month	of	the	previous	year
instead	of	the	previous	month.	In	both	cases,	we	have	to	specify	how	to	set	the	bounds	of	the



window	frame	for	the	functions	to	be	applied	upon.	In	Items	37	and	38,	because	we	did	not
specify	any	bounding,	the	defaults	were	applied	depending	on	whether	an	ORDER	BY	predicate
was	specified	or	not.	The	code	in	Listing	5.32	shows	the	equivalent	code	from	Listing	5.29	with
the	default	spelled	out.

Listing	5.32	Window	function	to	perform	a	running	sum,	with	defaults	shown

Click	here	to	view	code	image

SELECT	o.OrderNumber,	o.CustomerID,	o.OrderTotal
		SUM(o.OrderTotal)	OVER	(
				PARTITION	BY	o.CustomerID
				ORDER	BY	o.OrderNumber,	o.CustomerID
				RANGE	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW
		)	AS	TotalByCustomer,
		SUM(o.OrderTotal)	OVER	(
				PARTITION	BY	o.CustomerID
				--RANGE	BETWEEN	UNBOUNDED	PRECEDING	AND	UNBOUNDED	FOLLOWING
		)	AS	TotalOverall
FROM	Orders	AS	o
ORDER	BY	o.OrderID,	o.CustomerID;

Note	that	for	TotalOverall,	the	window	frame	definition	is	commented	out.	This	is	because	it
is	not	valid	to	define	a	window	frame	without	an	ORDER	BY	predicate.	Nonetheless,	this
illustrates	the	defaults	that	are	assumed	whenever	you	create	a	window	function	expression.	With
RANGE,	you	have	three	valid	bounding	options:

	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW
	BETWEEN	CURRENT	ROW	AND	UNBOUNDED	FOLLOWING
	BETWEEN	UNBOUNDED	PRECEDING	AND	UNBOUNDED	FOLLOWING

Instead	of	using	the	BETWEEN	...	AND	...	syntax,	you	can	opt	to	use	shorthand	alternatives,
which	are	equivalent	to	the	first	and	second	options,	respectively:

	UNBOUNDED	PRECEDING
	UNBOUNDED	FOLLOWING

When	you	use	RANGE,	the	current	row	is	compared	to	other	rows	and	grouped	based	on	the
ORDER	BY	predicate.	This	is	not	always	desirable;	you	might	actually	want	a	physical	offset
irrespective	of	whether	two	rows	have	the	same	results	for	an	ORDER	BY	predicate.	In	this
scenario,	you	would	specify	ROWS	instead	of	RANGE.	This	gives	you	three	options	in	addition	to
the	three	options	enumerated	previously:

	BETWEEN	N	PRECEDING	AND	CURRENT	ROW
	BETWEEN	CURRENT	ROW	AND	N	FOLLOWING
	BETWEEN	N	PRECEDING	AND	N	FOLLOWING

.	.	.	where	N	is	a	positive	integer.	You	can	also	substitute	the	CURRENT	ROW	with	either
UNBOUNDED	PRECEDING	or	UNBOUNDED	FOLLOWING	where	it	is	appropriate.	As	you	see,
you	must	use	ROWS	if	you	want	to	size	the	window	frame	arbitrarily,	and	it	can	be	sized	only	by



the	physical	offset	from	the	current	row.	You	cannot	use	an	expression	to	size	the	window	frame,
but	you	can	work	around	this	limitation	by	preprocessing	the	data	before	applying	the	window
frame.	For	instance,	you	could	create	a	common	table	expression	that	performs	some	grouping
and	then	apply	a	window	function(s)	on	that	CTE.
With	the	syntax	in	mind,	let’s	look	at	how	we	can	create	a	moving	average	of	three	months.	To
help	demonstrate	that	the	averages	are	correct,	we	include	LAG	and	LEAD	window	functions	in
Listing	5.33.	Note	that	the	listing	does	not	include	the	CTE	PurchaseStatistics,	which	is
defined	in	the	GitHub	sample.

Listing	5.33	Demonstration	of	moving	average	window	functions

Click	here	to	view	code	image

SELECT
		s.CustomerID,	s.PurchaseYear,	s.PurchaseMonth,
		LAG(s.PurchaseTotal,	1)	OVER	(
				PARTITION	BY	s.CustomerID,	s.PurchaseMonth
				ORDER	BY	s.PurchaseYear
		)	AS	PreviousMonthTotal,
		s.PurchaseTotal	AS	CurrentMonthTotal,
		LEAD(s.PurchaseTotal,	1)	OVER	(
				PARTITION	BY	s.CustomerID,	s.PurchaseMonth
				ORDER	BY	s.PurchaseYear
		)	AS	NextMonthTotal,
		AVG(s.PurchaseTotal)	OVER	(
				PARTITION	BY	s.CustomerID,	s.PurchaseMonth
				ORDER	BY	s.PurchaseYear
				ROWS	BETWEEN	1	PRECEDING	AND	1	FOLLOWING
		)	AS	MonthOfYearAverage
FROM	PurchaseStatistics	AS	s
ORDER	BY	s.CustomerID,	s.PurchaseYear,	s.PurchaseMonth;

Note	that	we	define	the	partitioning	(or	grouping)	to	be	by	CustomerID	and
PurchaseMonth.	This	allows	us	to	group	all	months	of	the	year	in	the	same	group	so	that	we
are	comparing	one	year’s	month	to	another	year’s,	not	the	month	before	or	after	the	current	month.
For	that	reason,	we	can	then	specify	a	physical	offset	of	1	both	preceding	and	following	as	the
boundary	for	the	window	frame.	The	selected	output	of	data	returned	by	the	query	is	shown	in
Table	5.21.



Table	5.21	Selected	rows	from	the	query	in	Listing	5.33

Looking	at	the	average	sales,	we	can	see	that	they	were	pretty	good	in	the	years	2012	and	2013.
For	June	2012,	the	2011	total	of	$1,402.53	and	the	2013	total	of	$8,400.52	were	averaged	with
the	2012	total	of	$6,254.64	to	give	us	the	overall	average	of	$5,352.56.
It	is	important	to	note	that	the	query	depends	on	physical	offsets	being	consistent.	The	query
assumes	that	there	will	be	always	12	rows	for	each	year.	Otherwise	the	PARTITION	BY	and
ORDER	BY	clauses	cannot	work	correctly.	If	it	were	possible	for	there	to	be	no	sales	in	certain
months	(e.g.,	the	company	closes	for	a	month	so	there	are	no	sales	made),	it	would	be	necessary
to	ensure	that	the	missing	months	are	supplied	somehow.	You	can	look	at	Item	56,	“Create	an
appointment	calendar	table	with	all	dates	enumerated	in	a	range,”	for	an	example	of	creating	a
calendar	that	can	then	be	left	joined	to	the	Purchases	table	to	ensure	that	those	missing	months
will	have	0	for	their	totals	and	thus	partition	correctly.

When	to	Use	RANGE	or	ROWS
It	can	be	hard	to	see	the	difference	between	RANGE	and	ROWS.	As	mentioned,
RANGE	works	with	logical	groupings	so	the	difference	is	manifested	only	when	the



ORDER	BY	predicate	returns	duplicate	values.	The	query	in	Listing	5.34	on	the	next
page	illustrates	how	we	can	use	both	with	an	equivalent	bounding	frame.	For	brevity,
the	CTE	PurchaseStatistics	is	not	shown	but	is	defined	in	the	GitHub
scripts.

Listing	5.34	Demonstration	of	a	query	with	both	RANGE	and	ROWS

Click	here	to	view	code	image

SELECT
		s.CustomerID,	s.PurchaseYear,	s.PurchaseMonth,
		SUM(s.PurchaseCount)	OVER	(
				PARTITION	BY	s.PurchaseYear
				ORDER	BY	s.CustomerID
				RANGE	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW
		)	AS	CountByRange,
		SUM(s.PurchaseCount)	OVER	(
				PARTITION	BY	s.PurchaseYear
				ORDER	BY	s.CustomerID
				ROWS	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW
		)	AS	CountByRows
FROM	PurchaseStatistics	AS	s
ORDER	BY	s.CustomerID,	s.PurchaseYear,	s.PurchaseMonth;

Note	that	the	ORDER	BY	predicate	is	defined	on	s.CustomerID,	which	is
duplicated	for	12	months	and	thus	is	not	unique.	Table	5.22	shows	a	possible	output.



Table	5.22	Demonstrating	the	difference	between	RANGE	and	ROWS

Because	the	ORDER	BY	predicate	does	not	include	PurchaseMonth,	there	are
12	rows	that	have	same	value	for	CustomerID	per	PurchaseYear.	RANGE
considers	those	to	be	logically	the	same	“group”	and	thus	gives	the	same	totals	for
all	12	rows,	whereas	ROWS	accumulates	the	count	as	the	rows	come	in.	The	counts
are	not	in	order	because	the	engine	considered	those	in	the	order	it	received	the
rows,	not	by	the	PurchaseMonth,	which	was	not	specified	in	the	ORDER	BY
predicate.	For	that	reason,	March	happened	to	be	the	last	row	received	and	thus	was
given	181,	instead	of	December.	As	you	learned	in	Item	37,	ORDER	BY	is	important
and	can	change	results	drastically,	so	extra	diligence	is	needed	when	forming	both
the	PARTITION	BY	and	ORDER	BY	predicates	for	window	function	expressions.

Things	to	Remember
	Whenever	you	need	to	change	the	window	frame’s	bounding	to	a	nondefault	setting,	you
must	specify	an	ORDER	BY	predicate	even	when	it	is	optional.
	If	you	need	to	define	an	arbitrary	size	for	a	window	frame,	you	must	use	ROWS,	which
allows	you	to	input	how	many	rows	preceding	or	following	are	to	be	included	in	the
window	frame.



	RANGE	can	accept	only	UNBOUNDED	PRECEDING,	CURRENT	ROW,	or	UNBOUNDED
FOLLOWING	as	valid	options.
	You	can	choose	between	RANGE	for	logical	grouping	of	rows	and	ROWS	for	physical	offset
of	the	rows.	If	the	ORDER	BY	predicate	does	not	return	duplicate	values,	the	results	are
equivalent.



6.	Subqueries

A	subquery	is	a	table	expression	created	by	embedding	a	complete	SELECT	statement	inside
parentheses	and	giving	it	a	name.	In	general,	you	can	use	a	subquery	anywhere	you	can	use	a	table
name.	As	you	will	learn	in	this	chapter,	you	can	also	use	a	subquery	that	returns	a	single	column
wherever	you	can	use	a	list	of	values—for	example,	in	an	IN	clause.	A	subquery	that	returns	one
column	and	zero	or	only	one	value	can	be	used	anywhere	you	can	use	a	column	name	or	a	single
literal.	The	subquery	is	a	powerful	construct	that	gives	you	lots	of	additional	flexibility	in	SQL.
The	first	item	in	this	chapter	explores	in	depth	where	you	can	use	the	different	kinds	of
subqueries.

Item	40:	Know	Where	You	Can	Use	Subqueries
We	use	the	term	subquery	to	mean	any	complete	SELECT	statement	that	is	enclosed	in
parentheses	and	is	usually	given	an	alias	name	with	an	AS	clause	outside	the	parentheses.	You	can
use	a	subquery	in	several	places	in	another	SELECT,	UPDATE,	INSERT,	or	DELETE	statement.
In	some	cases,	a	subquery	can	return	an	entire	set	of	data,	including	multiple	columns	and	rows
(also	called	a	table	subquery).	In	other	places,	a	subquery	must	return	only	a	single	column	with
multiple	rows	(a	table	subquery	with	only	one	column).	And	finally,	a	subquery	returning	only	one
value	(also	called	a	scalar	subquery)	is	useful	in	yet	other	ways.	The	uses	of	subqueries	are	as
follows:

	A	table	subquery	can	be	used	anywhere	you	can	also	use	the	name	of	a	table	or	a	view,	or	a
stored	procedure	or	function	that	returns	a	table.
	A	table	subquery	with	one	column	can	be	used	anywhere	you	can	use	a	table	subquery	or	as
the	list	of	values	to	be	compared	in	an	IN	predicate.
	A	scalar	subquery	can	be	used	anywhere	you	could	otherwise	use	a	column	name	or
expression	on	column	names.

The	following	subsections	discuss	each	type	of	subquery	and	show	examples.

Table	Subquery
Table	subqueries	are	particularly	useful	in	a	FROM	clause	that	joins	multiple	sets	of	data	where
you	need	to	filter	one	or	more	of	the	sets	before	performing	the	join.	Consider	the	problem	of
finding	all	recipes	that	use	both	beef	and	garlic	in	a	typical	Recipes	database.	One	way	to	solve
the	problem	is	to	build	two	separate	table	subqueries,	one	that	finds	recipes	using	beef,	and	a
second	that	finds	recipes	using	garlic,	and	then	join	the	two	subqueries	to	find	recipes	that	contain
both.	The	solution	might	look	something	like	Listing	6.1.

Listing	6.1	Finding	recipes	using	both	beef	and	garlic	with	table	subqueries

Click	here	to	view	code	image

SELECT	BeefRecipes.RecipeTitle
FROM	(



		SELECT	Recipes.RecipeID,	Recipes.RecipeTitle
		FROM	Recipes
				INNER	JOIN	Recipe_Ingredients
						ON	Recipes.RecipeID	=	Recipe_Ingredients.RecipeID
				INNER	JOIN	Ingredients
						ON	Ingredients.IngredientID	=
								Recipe_Ingredients.IngredientID
		WHERE	Ingredients.IngredientName	=	'Beef'
		)	AS	BeefRecipes
		INNER	JOIN	(
				SELECT	Recipe_Ingredients.RecipeID
				FROM	Recipe_Ingredients
				INNER	JOIN	Ingredients
						ON	Ingredients.IngredientID	=
								Recipe_Ingredients.IngredientID
		WHERE	Ingredients.IngredientName	=	'Garlic'
		)	AS	GarlicRecipes
		ON	BeefRecipes.RecipeID	=	GarlicRecipes.RecipeID;

Note	that	we	included	the	RecipeTitle	column	in	only	one	of	the	two	subqueries,	so	we	did
not	need	to	include	the	Recipes	table	in	the	second	subquery	because	we	need	only	the
RecipeID	value	to	perform	the	join.
Another	less	common	use	of	a	table	subquery	is	in	an	EXISTS	predicate	that	will	accept	a	table
subquery.	Similar	to	the	recipes	problem,	assume	you	want	to	find	all	customers	who	purchased
both	a	skateboard	and	a	helmet	in	the	same	order.	You	could	solve	the	problem	using	EXISTS
and	two	correlated	table	subqueries	that	filter	for	the	current	OrderNumber	value	in	the	outer
query	and	either	“Skateboard”	or	“Helmet”	in	the	related	Products	table.	Listing	6.2	shows	the
possible	solution.

Note
See	Item	41,	“Know	the	difference	between	correlated	and	non-correlated
subqueries,”	for	more	information	on	correlated	subqueries.

Listing	6.2	Using	table	subqueries	with	the	EXISTS	predicate

Click	here	to	view	code	image

SELECT	Customers.CustomerID,	Customers.CustFirstName,
		Customers.CustLastName,	Orders.OrderNumber,	Orders.OrderDate
FROM	Customers
		INNER	JOIN	Orders
				ON	Customers.CustomerID	=	Orders.CustomerID
WHERE	EXISTS	(
		SELECT	NULL
		FROM	Orders	AS	o2
				INNER	JOIN	Order_Details
						ON	o2.OrderNumber	=	Order_Details.OrderNumber
				INNER	JOIN	Products
						ON	Products.ProductNumber	=	Order_Details.ProductNumber
		WHERE	Products.ProductName	=	'Skateboard'
				AND	o2.OrderNumber	=	Orders.OrderNumber
		)	AND	EXISTS	(



		SELECT	NULL
		FROM	Orders	AS	o3
				INNER	JOIN	Order_Details
						ON	o3.OrderNumber	=	Order_Details.OrderNumber
				INNER	JOIN	Products
						ON	Products.ProductNumber	=	Order_Details.ProductNumber
		WHERE	Products.ProductName	=	'Helmet'
				AND	o3.OrderNumber	=	Orders.OrderNumber
		);

Note
The	actual	product	names	in	the	Sales	Orders	sample	database	are	not	simply
Skateboard	and	Helmet,	so	the	example	query	in	Listing	6.2	returns	no	rows.	To
solve	this	using	the	sample	database,	you	would	need	to	use	LIKE
'%Skateboard%'	and	LIKE	'%Helmet%'	to	see	results.	We	used	the	simple
values	in	the	example	query	to	make	it	easier	to	understand.

Note	that	when	the	EXISTS	predicate	is	used,	the	SELECT	list	is	usually	irrelevant,	and	to
emphasize	that	point	we	use	NULL	as	the	lone	column	selection.	For	most	database	engines,	*	or
1	will	work	equally	well,	but	for	making	the	code	self-documenting,	we	think	NULL	is	the	best
choice.
This	might	not	be	the	best	way	to	solve	the	problem.	The	database	engine	must	logically	run	both
queries	for	every	order	found	in	the	database	because	they	depend	on	being	filtered	by	the
OrderNumber	value	in	each	row	in	the	outer	query.	Just	because	you	can	solve	a	problem	this
way	does	not	mean	you	should.	We	discuss	some	of	the	pros	and	cons	further	in	Item	41	later	in
this	chapter.

Table	Subquery	with	One	Column
A	table	subquery	with	one	column	returned	can	be	used	anywhere	you	can	use	a	full	table
subquery.	Because	the	subquery	returns	only	one	column,	that	column	acts	as	a	list	of	values	that
can	certainly	be	used	to	supply	the	list	for	the	IN	or	NOT	IN	predicate.
Suppose	you	wanted	to	display	a	list	of	all	products	that	were	not	ordered	at	all	in	the	month	of
December	2015.	Listing	6.3	uses	a	single-column	table	subquery	in	the	possible	solution.

Listing	6.3	Finding	products	not	ordered	in	December	2015	using	a	single-column	table	subquery

Click	here	to	view	code	image

SELECT	Products.ProductName
FROM	Products
WHERE	Products.ProductNumber	NOT	IN	(
		SELECT	Order_Details.ProductNumber
		FROM	Orders
				INNER	JOIN	Order_Details
						ON	Orders.OrderNumber	=	Order_Details.OrderNumber
		WHERE	Orders.OrderDate
				BETWEEN	'2015-12-01'	AND	'2015-12-31'
		);



Of	course,	you	can	use	a	single-column	table	subquery	anywhere	you	can	use	an	IN	clause,	even
within	a	CASE	statement	in	the	list	of	columns	specified	in	the	SELECT	clause.	Suppose	you
have	sales	reps	living	in	several	states,	and	you	want	them	to	focus	on	existing	customers	who
live	in	the	same	state.	You	might	want	to	produce	a	list	of	all	employees	and	customers	in	the
same	state	and	let	the	employee	know	which	customers	have	or	have	not	placed	an	order.	Listing
6.4	shows	a	potential	solution.

Listing	6.4	Using	a	single-column	table	subquery	in	a	CASE	statement

Click	here	to	view	code	image

SELECT	Employees.EmpFirstName,	Employees.EmpLastName,
		Customers.CustFirstName,	Customers.CustLastName,
		Customers.CustAreaCode,	Customers.CustPhoneNumber,
		CASE	WHEN	Customers.CustomerID	IN	(
				SELECT	CustomerID
				FROM	Orders
				WHERE	Orders.EmployeeID	=	Employees.EmployeeID
				)	THEN	'Ordered	from	you.'
				ELSE	'	'
		END	AS	CustStatus
FROM	Employees
		INNER	JOIN	Customers
				ON	Employees.EmpState	=	Customers.CustState;

Scalar	Subquery
A	scalar	subquery	returns	zero	or	only	one	value	in	one	column	in	a	single	row.	You	can	certainly
use	a	scalar	subquery	anywhere	you	can	use	a	table	subquery	or	a	table	subquery	that	returns	one
column.	However,	scalar	subqueries	are	also	usable	anywhere	you	would	otherwise	use	a	column
name	or	an	expression.	They	can	also	be	used	in	expressions	with	other	columns	and	operators.
Let’s	take	a	look	at	a	couple	of	examples	using	a	scalar	subquery.	In	the	first	example,	we	list	all
products	and	the	latest	order	date	for	each	product	using	the	MAX()	aggregate	function.	We	know
that	MAX()	returns	a	single	value,	so	we	definitely	have	a	scalar	subquery.	Listing	6.5	shows	the
solution.

Listing	6.5	Using	a	scalar	subquery	as	a	column	in	a	SELECT	clause

Click	here	to	view	code	image

SELECT	Products.ProductNumber,	Products.ProductName,	(
				SELECT	MAX(Orders.OrderDate)
				FROM	Orders
						INNER	JOIN	Order_Details
								ON	Orders.OrderNumber	=	Order_Details.OrderNumber
				WHERE	Order_Details.ProductNumber	=	Products.ProductNumber
				)	AS	LastOrder
FROM	Products;

You	can	also	use	a	scalar	subquery	to	return	a	single	value	to	be	used	in	any	comparison
predicate.	If	we	want	to	list	all	vendors	whose	average	number	of	days	to	deliver	all	their
products	is	greater	than	the	average	for	all	vendors,	we	might	code	the	solution	as	shown	in



Listing	6.6	on	the	next	page.

Listing	6.6	Using	a	scalar	subquery	in	a	comparison	predicate

Click	here	to	view	code	image

SELECT	Vendors.VendName,
		AVG(Product_Vendors.DaysToDeliver)	AS	AvgDelivery
FROM	Vendors
		INNER	JOIN	Product_Vendors
				ON	Vendors.VendorID	=	Product_Vendors.VendorID
GROUP	BY	Vendors.VendName
HAVING	AVG(Product_Vendors.DaysToDeliver)	>	(
		SELECT	AVG(DaysToDeliver)
		FROM	Product_Vendors
		);

You	can	see	that	we	used	a	scalar	subquery	to	generate	a	comparison	value	in	the	HAVING
clause.

Things	to	Remember
	You	can	use	table	subqueries	anywhere	you	could	otherwise	use	a	table	or	view	name	or
name	of	a	function	or	procedure	that	returns	a	table.
	You	can	use	a	table	subquery	that	returns	a	single	column	anywhere	you	can	use	a	table
subquery	and	where	you	need	to	generate	a	list	for	an	IN	or	NOT	IN	predicate.
	Scalar	subqueries	can	be	used	anywhere	you	can	use	a	column	name—in	a	SELECT	list,	in
an	expression	in	a	SELECT	list,	or	as	part	of	a	comparison	predicate.

Item	41:	Know	the	Difference	between	Correlated	and	Non-correlated
Subqueries
As	you	learned	in	Item	40,	“Know	where	you	can	use	subqueries,”	a	SELECT	statement
embedded	in	parentheses	within	another	query	can	be	a	powerful	tool.	A	subquery	is	“correlated”
when	some	condition	within	the	subquery	(in	a	WHERE	or	HAVING	clause)	depends	on	a	value	in
the	current	row	being	processed	in	the	outer	query.	A	non-correlated	subquery	is	not	dependent	on
an	external	value—it	could	be	run	as	a	separate	query	when	not	embedded	in	another	query.	We
will	take	a	look	at	some	examples	of	each	type	of	subquery	in	the	following	sections.
Before	we	get	started,	it	would	help	to	give	you	the	design	of	the	database	we	use	in	this	item.
The	database	to	keep	track	of	your	favorite	recipes	looks	like	Figure	6.1.



Figure	6.1	Sample	design	for	a	Recipes	database

Now	let’s	look	at	the	two	types	of	subqueries.

Non-correlated	Subqueries
You	typically	use	a	non-correlated	subquery	in	two	cases:

	As	a	filtered	set	of	data	in	a	FROM	clause
	As	a	single-column	set	of	data	for	an	IN	predicate	in	a	WHERE	clause	or	a	single	value
(scalar	subquery)	for	a	comparison	predicate	in	a	WHERE	or	HAVING	clause

First,	let’s	look	at	using	a	non-correlated	subquery	in	a	FROM	clause.	Listing	6.7	(which	you
already	saw	as	Listing	6.1	in	Item	40)	shows	one	way	to	find	all	recipes	that	have	both	beef	and
garlic	as	an	ingredient.

Listing	6.7	Finding	recipes	with	both	beef	and	garlic	using	non-correlated	subqueries

Click	here	to	view	code	image

SELECT	BeefRecipes.RecipeTitle
FROM	(
		SELECT	Recipes.RecipeID,	Recipes.RecipeTitle
		FROM	Recipes
				INNER	JOIN	Recipe_Ingredients
						ON	Recipes.RecipeID	=	Recipe_Ingredients.RecipeID
				INNER	JOIN	Ingredients
						ON	Ingredients.IngredientID	=
								Recipe_Ingredients.IngredientID
		WHERE	Ingredients.IngredientName	=	'Beef'
		)	AS	BeefRecipes
		INNER	JOIN	(
		SELECT	Recipe_Ingredients.RecipeID
		FROM	Recipe_Ingredients
				INNER	JOIN	Ingredients
						ON	Ingredients.IngredientID	=
								Recipe_Ingredients.IngredientID
		WHERE	Ingredients.IngredientName	=	'Garlic'
		)	AS	GarlicRecipes
		ON	BeefRecipes.RecipeID	=	GarlicRecipes.RecipeID;



The	first	subquery	returns	the	recipe	title	and	the	ID	of	all	recipes	containing	beef.	The	second
subquery	returns	the	ID	of	all	recipes	containing	garlic.	When	you	perform	an	inner	join	on	the
two	subqueries	on	the	RecipeID	column,	you	find	the	correct	answer—the	recipes	that	contain
both	ingredients.	Note	that	both	queries	are	filtered,	but	the	filter	in	the	WHERE	clause	does	not
depend	on	any	value	returned	outside	the	subquery.	You	could	take	either	subquery	and	run	it
independently.
Now	let’s	look	at	using	a	non-correlated	subquery	to	use	as	a	filter	for	an	IN	predicate	in	a
WHERE	clause.	Listing	6.8	shows	an	example.

Listing	6.8	Listing	recipes	that	are	a	salad,	a	soup,	or	a	main	course

Click	here	to	view	code	image

SELECT	Recipes.RecipeTitle
FROM	Recipes
WHERE	Recipes.RecipeClassID	IN	(
		SELECT	rc.RecipeClassID
		FROM	Recipe_Classes	AS	rc
		WHERE	rc.RecipeClassDescription	IN
				('Salad',	'Soup',	'Main	course')
		);

Again,	you	could	run	the	subquery	that	provides	values	to	the	IN	predicate	separately	because	it
does	not	depend	on	any	value	returned	outside	the	subquery.	You	could	also	solve	this	problem	by
doing	an	inner	join	between	the	Recipes	table	and	the	Recipe_Classes	table	in	the	main
FROM	clause	and	using	a	simple	IN	clause.	However,	using	the	subquery	turns	out	to	be	slightly
more	efficient	(at	least	in	SQL	Server)	than	using	JOIN.
Finally,	let’s	look	at	using	a	scalar	subquery	in	a	WHERE	clause.	The	SQL	in	Listing	6.9	shows	a
method	for	finding	the	recipe	that	uses	the	most	garlic	(just	for	you	garlic	lovers).	Note	that	the
standard	measure	amount	(in	this	case,	cloves	of	garlic)	is	specified	in	the	Ingredients	table,
so	we	can	assume	that	all	quantities	in	the	RecipeIngredients	table	use	the	same	measure.

Listing	6.9	Finding	the	recipe	that	uses	the	most	garlic

Click	here	to	view	code	image

SELECT	DISTINCT	Recipes.RecipeTitle
FROM	Recipes
		INNER	JOIN	Recipe_Ingredients
				ON	Recipes.RecipeID	=	Recipe_Ingredients.RecipeID
		INNER	JOIN	Ingredients
				ON	Recipe_Ingredients.IngredientID
						=	Ingredients.IngredientID
WHERE	Ingredients.IngredientName	=	'Garlic'
		AND	Recipe_Ingredients.Amount	=	(
						SELECT	MAX(Amount)
						FROM	Recipe_Ingredients
								INNER	JOIN	Ingredients
										ON	Recipe_Ingredients.IngredientID	=
												Ingredients.IngredientID
						WHERE	IngredientName	=	'Garlic'



						);

As	with	any	non-correlated	subquery,	you	could	run	the	SELECT	MAX	subquery	by	itself	with	no
problems.	Because	the	MAX	aggregate	function	returns	a	single	value,	we	can	use	the	subquery	to
return	a	comparison	value	for	an	equals	predicate	in	the	WHERE	clause.

Correlated	Subqueries
A	correlated	subquery	uses	one	or	more	filters	in	either	a	WHERE	or	a	HAVING	clause	that
depend	on	a	value	provided	by	the	outer	query.	Because	of	this	dependence,	the	subquery	is	“co-
related”	to	the	outer	query,	and	your	database	engine	must	run	the	subquery	once	for	every	row
returned	by	the	outer	query.	This	can,	potentially,	make	using	a	subquery	like	this	run	more	slowly
than	other	techniques,	but	that	is	not	always	the	case	because	some	database	systems	smartly
optimize	queries	that	contain	a	correlated	subquery.
You	are	not	likely	to	use	a	correlated	subquery	as	one	of	the	sets	in	a	FROM	clause	because	it	is
simpler	and	more	straightforward	to	use	JOIN	instead.	(In	fact,	many	database	systems	use	JOIN
in	the	execution	plan	to	optimize	correlated	subqueries.)	You	can	use	a	correlated	scalar	subquery
to	return	a	value	in	a	SELECT	clause,	to	provide	a	single	value	to	test	in	a	comparison	predicate
in	a	WHERE	or	HAVING	clause,	to	provide	a	single-column	list	for	the	IN	predicate	in	a	WHERE
or	HAVING	clause,	or	to	provide	a	set	for	testing	in	an	EXISTS	predicate	in	a	WHERE	or
HAVING	clause.
Let’s	first	look	at	using	a	scalar	correlated	subquery	to	return	a	value	in	a	SELECT	clause.
Listing	6.10	on	the	next	page	shows	one	way	to	list	all	recipe	classes	along	with	a	count	of	the
recipes	in	each	class.

Listing	6.10	Getting	a	count	of	rows	using	a	correlated	subquery

Click	here	to	view	code	image

SELECT	Recipe_Classes.RecipeClassDescription,	(
				SELECT	COUNT(*)
				FROM	Recipes
				WHERE	Recipes.RecipeClassID	=
						Recipe_Classes.RecipeClassID
				)	AS	RecipeCount
FROM	Recipe_Classes;

The	subquery	is	correlated	because	it	must	be	filtered	on	a	value	from	the	Recipe_Classes
table	in	the	outer	query—that	is,	your	database	system	must	run	the	subquery	once	for	every	row
in	the	Recipe_Classes	table.	You	might	be	wondering	why	we	did	not	just	use	JOIN	and
GROUP	BY	to	get	the	answer.	We	did	it	this	way	for	two	reasons:	(1)	the	query	with	the
correlated	subquery	actually	runs	faster	on	most	database	systems,	and	(2)	you	will	get	the	wrong
answer	if	you	use	the	GROUP	BY	technique.	For	more	details	about	why	the	second	reason	is
true,	consult	Item	34,	“Avoid	getting	an	erroneous	COUNT()	when	using	OUTER	JOIN.”
Now	let’s	look	at	using	a	correlated	subquery	to	return	a	set	for	testing	in	an	EXISTS	predicate.
Earlier	in	Listing	6.7,	we	showed	you	how	to	find	all	recipes	that	have	both	beef	and	garlic.	You



get	the	same	answer	using	correlated	subqueries	and	an	existence	test.	Listing	6.11	shows	how.

Listing	6.11	Finding	recipes	with	both	beef	and	garlic	using	correlated	subqueries

Click	here	to	view	code	image

SELECT	Recipes.RecipeTitle
FROM	Recipes
WHERE	EXISTS	(
		SELECT	NULL
		FROM	Ingredients
				INNER	JOIN	Recipe_Ingredients
						ON	Ingredients.IngredientID	=
								Recipe_Ingredients.IngredientID
		WHERE	Ingredients.IngredientName	=	'Beef'
				AND	Recipe_Ingredients.RecipeID	=	Recipes.RecipeID
		)	AND	EXISTS	(
		SELECT	NULL
		FROM	Ingredients
				INNER	JOIN	Recipe_Ingredients
						ON	Ingredients.IngredientID	=
								Recipe_Ingredients.IngredientID
		WHERE	Ingredients.IngredientName	=	'Garlic'
				AND	Recipe_Ingredients.RecipeID	=	Recipes.RecipeID
		);

Because	each	subquery	references	the	Recipes	table	in	the	outer	query,	your	database	system
must	run	both	subqueries	for	every	row	in	the	Recipes	table.	You	might	expect	that	this	second
version	of	the	query	would	run	much	more	slowly	(or	less	efficiently)	than	the	first	version.	It
does	take	a	few	more	resources	(55%	versus	45%	in	SQL	Server),	but	it	is	not	horrendously
awful	because	most	database	systems	optimize	the	second	query	discussed	in	next	paragraph.
Note,	however,	that	there	is	no	index	defined	on	the	IngredientName	column.	If	we	add	an
index	to	that	column,	the	EXISTS	version	wins	handily.	This	simply	points	out	how	important	an
index	can	be	when	you	use	a	sargable	predicate.	See	Item	28,	“Write	sargable	queries	to	ensure
that	the	engine	will	use	indexes,”	for	more	details.
As	you	might	expect,	you	could	also	solve	the	query	using	IN.	Instead	of	EXISTS	(SELECT
Recipe_Ingredients.RecipeID	...),	you	could	use	Recipes.RecipeID	IN
(SELECT	Recipe_Ingredients.RecipeID	...).	It	turns	out	that	the	IN	version	uses
about	the	same	amount	of	resources	as	the	EXISTS	version,	but	only	because	there	is	no	index	on
the	IngredientName	column.	If	we	add	an	index	to	that	column,	the	EXISTS	version	runs
faster.	Without	an	index,	EXISTS	may	still	run	faster	because	most	optimizers	stop	running	the
subquery	as	soon	as	the	engine	finds	the	first	row,	but	IN	usually	retrieves	all	rows.	A	regular
JOIN	clause	can	create	duplicate	rows	when	joining	a	pair	of	tables	that	participate	in	a	one-to-
many	relationship.	With	an	EXISTS	predicate,	the	optimizer	optimizes	it	as	a	“semi-join,”	in
which	case	the	outermost	table’s	rows	do	not	get	duplicated	and	the	optimizer	does	not	need	to
actually	process	the	entire	contents	of	the	inner	table	as	it	would	with	an	IN	predicate.

Things	to	Remember
	A	correlated	subquery	uses	a	reference	in	a	WHERE	or	HAVING	clause	that	depends	on	a



value	from	the	query	in	which	the	subquery	is	embedded.
	A	non-correlated	subquery	has	no	dependence	on	the	outer	query	and	could	be	run	by	itself.
	You	typically	use	a	non-correlated	subquery	as	either	a	filtered	set	of	data	in	a	FROM
clause,	as	a	single-column	set	of	data	for	an	IN	predicate,	or	to	return	a	scalar	value	for	a
comparison	predicate	in	a	WHERE	or	HAVING	clause.
	You	use	a	correlated	subquery	to	return	a	scalar	value	in	a	SELECT	clause,	to	provide	a
single	value	to	test	in	a	comparison	predicate	in	a	WHERE	or	HAVING	clause,	or	to	provide
a	set	for	existence	testing	in	an	EXISTS	clause.
	A	correlated	subquery	is	not	necessarily	slower	than	some	other	method,	and	it	may	be	the
only	way	to	return	the	correct	answer.

Item	42:	If	Possible,	Use	Common	Table	Expressions	Instead	of	Subqueries
In	Item	25,	“Know	techniques	to	solve	multiple-criteria	problems,”	we	showed	you	how	to	solve
a	complex	problem	to	find	customers	who	purchased	all	of	four	different	products.	We	also
showed	you	how	to	find	customers	who	purchased	a	potentially	dangerous	product	(a	skateboard)
but	who	did	not	buy	all	the	necessary	protective	gear	(helmet,	gloves,	and	knee	pads).	In	that	item,
we	suggested	that	you	could	create	a	function	that	evaluates	a	complex	join	and	filters	it	based	on
a	parameter	to	make	your	final	SQL	simpler.

Note
Neither	Microsoft	Access	nor	MySQL	supports	common	table	expressions.

Figure	6.2	shows	the	design	of	the	Sales	Orders	database	that	we	use	in	this	item.



Figure	6.2	Design	of	a	typical	Sales	Orders	database

One	of	the	disadvantages	of	a	function	is	that	you	cannot	see	what	the	function	is	doing	in	your
final	SQL.	Also,	you	or	someone	else	could	inadvertently	change	the	separate	function	and	break
the	query	that	depends	on	it.	There	is	a	better	way	to	do	this:	a	common	table	expression	(CTE),
provided	your	database	system	supports	that	feature.	(IBM	DB2,	Microsoft	SQL	Server,	Oracle,
and	PostgreSQL	all	support	CTEs;	Microsoft	Access	as	of	2016	and	MySQL	as	of	5.7	do	not.)

Using	a	CTE	to	Simplify	a	Query
First,	let’s	review	the	original	query	used	to	find	the	customers	who	purchased	skateboards,
helmets,	knee	pads,	and	gloves—all	four	products.	Listing	6.12	shows	the	original	solution.

Note
The	actual	product	names	in	the	Sales	Orders	sample	database	are	not	simply
Skateboard	and	Helmet,	so	the	example	queries	in	this	item	return	no	rows.	To	solve
these	using	the	sample	database,	you	would	need	to	use	LIKE	'%Skateboard%'
and	LIKE	'%Helmet%'	to	see	results.	We	used	the	simple	values	in	the	example
queries	to	make	them	easier	to	understand.

Listing	6.12	Finding	customers	who	purchased	all	four	products

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName



FROM	Customers	AS	c
		INNER	JOIN	(
		SELECT	DISTINCT	Orders.CustomerID
		FROM	Orders
				INNER	JOIN	Order_Details
						ON	Orders.OrderNumber	=	Order_Details.OrderNumber
				INNER	JOIN	Products
						ON	Products.ProductNumber	=	Order_Details.ProductNumber
		WHERE	Products.ProductName	=	'Skateboard'
		)	AS	OSk
				ON	c.CustomerID	=	OSk.CustomerID
		INNER	JOIN	(
		SELECT	DISTINCT	Orders.CustomerID
		FROM	Orders
				INNER	JOIN	Order_Details
						ON	Orders.OrderNumber	=	Order_Details.OrderNumber
				INNER	JOIN	Products
						ON	Products.ProductNumber	=	Order_Details.ProductNumber
		WHERE	Products.ProductName	=	'Helmet'
		)	AS	OHel
				ON	c.CustomerID	=	OHel.CustomerID
		INNER	JOIN	(
		SELECT	DISTINCT	Orders.CustomerID
		FROM	Orders
				INNER	JOIN	Order_Details
						ON	Orders.OrderNumber	=	Order_Details.OrderNumber
				INNER	JOIN	Products
						ON	Products.ProductNumber	=	Order_Details.ProductNumber
		WHERE	Products.ProductName	=	'Knee	Pads'
		)	AS	OKn
		ON	c.CustomerID	=	OKn.CustomerID
		INNER	JOIN	(
		SELECT	DISTINCT	Orders.CustomerID
		FROM	Orders
				INNER	JOIN	Order_Details
						ON	Orders.OrderNumber	=	Order_Details.OrderNumber
				INNER	JOIN	Products
						ON	Products.ProductNumber	=	Order_Details.ProductNumber
		WHERE	Products.ProductName	=	'Gloves'
		)	AS	OGl
		ON	c.CustomerID	=	OGl.CustomerID;

The	four	table	subqueries	make	the	query	difficult	to	read	and	understand.	The	only	difference
among	the	four	is	the	value	of	the	ProductName	selected.	If	you	include	the	ProductName
column	in	a	CTE	within	the	query,	you	can	reference	the	name	of	the	CTE	as	though	it	were	a
table	and	apply	the	necessary	filter.	Listing	6.13	shows	how	to	simplify	this	query	using	a	CTE.
You	define	a	CTE	using	a	WITH	clause.

Listing	6.13	Finding	customers	who	purchased	all	four	products	using	a	CTE

Click	here	to	view	code	image

WITH	CustProd	AS	(
		SELECT	Orders.CustomerID,	Products.ProductName
		FROM	Orders
				INNER	JOIN	Order_Details
						ON	Orders.OrderNumber	=	Order_Details.OrderNumber



				INNER	JOIN	Products
						ON	Products.ProductNumber	=	Order_Details.ProductNumber
		),
SkateboardOrders	AS	(
		SELECT	DISTINCT	CustomerID
		FROM	CustProd
		WHERE	ProductName	=	'Skateboard'
		),
HelmetOrders	AS	(
		SELECT	DISTINCT	CustomerID
		FROM	CustProd
		WHERE	ProductName	=	'Helmet'
		),
KneepadsOrders	AS	(
		SELECT	DISTINCT	CustomerID
		FROM	CustProd
		WHERE	ProductName	=	'Knee	Pads'
		),
GlovesOrders	AS	(
		SELECT	DISTINCT	CustomerID
		FROM	CustProd
		WHERE	ProductName	=	'Gloves'
)
SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName
FROM	Customers	AS	c
		INNER	JOIN	SkateboardOrders	AS	OSk
				ON	c.CustomerID	=	OSk.CustomerID
		INNER	JOIN	HelmetOrders	AS	OHel
				ON	c.CustomerID	=	OHel.CustomerID
		INNER	JOIN	KneepadsOrders	AS	OKn
				ON	c.CustomerID	=	OKn.CustomerID
		INNER	JOIN	GlovesOrders	AS	OGl
				ON	c.CustomerID	=	OGl.CustomerID;

As	you	can	see,	using	a	CTE	in	the	query	greatly	shortens	and	simplifies	it.	You	can	readily	see
what	CustProd	returns	without	having	to	look	up	a	separate	function.	Note	that	we	had	to
include	the	ProductName	column	in	the	output	of	the	CTE	so	that	we	could	apply	the
appropriate	filter.
You	can	also	see	that	you	can	create	multiple	CTEs	and	have	those	CTEs	refer	back	to	other
CTEs	if	you	want.	The	biggest	advantage	of	using	a	CTE	is	that	it	enables	you	to	build	a	complex
query	by	reading	the	subqueries	from	top	to	bottom	instead	of	from	inside	out	as	it	has	been
traditionally	done.	This	is	particularly	useful	when	you	need	to	build	a	query	for	reporting,	and
you	must	perform	aggregations	with	a	different	grouping.	The	other	big	advantage	is	that	you	can
reuse	CTEs	in	multiple	places	within	a	query	statement.
Some	might	have	approached	the	problem	by	creating	multiple	views,	then	joining	them	together.
However,	this	is	much	harder	to	maintain	because	one	must	examine	each	view’s	definition	to
piece	together	the	final	query	and	deal	with	proliferation	of	several	views	that	are	not	directly
usable.	CTEs	enable	you	to	create	a	“private”	view	that	is	contained	within	the	view’s	definition
and	thus	maintain	definitions	in	one	place.	You	could	certainly	turn	the	preceding	SQL	into	a	view
by	placing	a	CREATE	VIEW	statement	at	the	beginning.

Using	a	Recursive	CTE



One	of	the	interesting	things	you	can	do	with	a	CTE	is	make	it	recursive—that	is,	have	the	CTE
call	itself	to	generate	additional	rows.	When	you	make	a	CTE	recursive,	most	databases	restrict
what	you	can	do.	For	example,	Microsoft	SQL	Server	disallows	DISTINCT,	GROUP	BY,
HAVING,	scalar	aggregation,	subqueries,	and	LEFT	or	RIGHT	JOIN	(INNER	JOIN	is
allowed).
The	ISO	SQL	Standard	dictates	that	you	must	use	the	RECURSIVE	keyword	after	the	WITH
keyword	if	you	intend	to	make	the	CTE	recursive.	However,	only	PostgreSQL	requires	that
keyword.	In	all	other	database	systems	that	support	CTEs,	you	either	do	not	need	the	keyword	or
the	keyword	is	not	recognized.
Let’s	look	at	a	simple	example	that	generates	a	list	of	numbers	from	1	to	100.	Listing	6.14	shows
how.	(Note	that	we	did	not	include	the	RECURSIVE	keyword.)

Listing	6.14	Generating	a	list	of	numbers	from	1	to	100

WITH	SeqNumTbl	AS	(
		SELECT	1	AS	SeqNum
		UNION	ALL
		SELECT	SeqNum	+	1
		FROM	SeqNumTbl
		WHERE	SeqNum	<	100
)
SELECT	SeqNum
FROM	SeqNumTbl;

The	second	SELECT	in	the	UNION	query	calls	the	CTE	again	and	adds	1	to	the	last	number
generated	but	stops	when	the	number	reaches	100.	When	you	get	to	Chapter	9,	“Tally	Tables,”	you
will	find	that	we	often	use	a	list	of	numbers	similar	to	this	in	a	saved	table	to	do	some	creative
things	with	SQL.	Although	you	could	use	the	CTE	shown	here	instead	of	a	saved	tally	table,	using
the	saved	table	may	be	faster	because	you	can	index	the	values	in	a	saved	table,	but	the	columns
generated	by	a	CTE	can	never	be	indexed.
Another	interesting	thing	to	do	with	a	recursive	CTE	is	to	traverse	a	hierarchy	in	a	self-
referencing	table.	Let’s	use	the	ManagerID	column	in	the	Employees	table	in	the	sample
Sales	Orders	database	matched	with	EmployeeID	to	list	all	employees	and	their	managers.	The
sample	data	looks	like	Table	6.1.



Table	6.1	Relevant	columns	from	the	Employees	table

You	can	create	a	list	of	managers	and	employees	by	using	a	recursive	CTE	similar	to	that	found	in
Listing	6.15.

Listing	6.15	Displaying	managers	and	all	employees

Click	here	to	view	code	image

WITH	MgrEmps	(
				ManagerID,	ManagerName,	EmployeeID,	EmployeeName,
				EmployeeLevel
)	AS	(
		SELECT	ManagerID,	CAST('	'	AS	varchar(50)),	EmployeeID,
				CAST(CONCAT(EmpFirstName,	'	',	EmpLastName)
						AS	varchar(50)),	0	AS	EmployeeLevel
		FROM	Employees
		WHERE	ManagerID	IS	NULL
		UNION	ALL
		SELECT	e.ManagerID,	d.EmployeeName,	e.EmployeeID,
				CAST(CONCAT(e.EmpFirstName,	'	',	e.EmpLastName)
						AS	varchar(50)),	EmployeeLevel	+	1
		FROM	Employees	AS	e
				INNER	JOIN	MgrEmps	AS	d
						ON	e.ManagerID	=	d.EmployeeID
)
SELECT	ManagerID,	ManagerName,	EmployeeID,	EmployeeName,
		EmployeeLevel
FROM	MgrEmps
ORDER	BY	ManagerID;

The	first	query	in	the	CTE	finds	the	employees	who	do	not	have	a	ManagerID	specified	to	get
the	starting	root	rows.	We	use	CAST	to	ensure	that	the	data	types	of	all	the	name	columns	are
compatible	so	that	the	UNION	will	work.	The	second	query	joins	the	CTE	(recursively)	with	the
original	Employees	table	to	match	managers	with	their	employees.	The	query	returns	the	results



shown	in	Table	6.2.

Table	6.2	Listing	managers	and	their	employees	using	a	recursive	CTE

The	first	two	rows	list	the	managers	who	do	not	report	to	anyone	else	in	the	table.	The	remaining
rows	show	the	employees	of	those	managers,	and	you	can	see	that	Susan	Smith	reports	to	David
Viescas	who	then	reports	to	Carol	Viescas.
You	will	most	likely	use	CTEs	to	simplify	complex	queries	that	use	the	same	subquery	more	than
once.	You	can	also	see	that	recursive	CTEs	let	you	do	creative	things	in	SQL	that	you	might	not
have	imagined.

Things	to	Remember
	Common	table	expressions	(CTEs)	let	you	simplify	complex	queries	that	use	the	same
subquery	more	than	once.
	CTEs	free	you	from	using	a	function	that	might	be	inadvertently	changed,	thus	making	your
query	that	uses	that	function	not	work	correctly.
	CTEs	let	you	define	the	subquery	that	you	are	embedding	in	another	query	directly	in	the
same	SQL,	so	the	query	is	easier	to	understand.
	Although	you	can	use	a	recursive	CTE	to	generate	values	you	might	otherwise	find	in	a	tally
table	(see	also	Chapter	9),	the	stored	tally	table	is	more	efficient	because	you	can	index	it.
	Recursive	CTEs	let	you	navigate	a	hierarchical	relationship	and	display	the	information	in
a	meaningful	way.

Item	43:	Create	More	Efficient	Queries	Using	Joins	Rather	than	Subqueries
There	are	often	many	different	ways	to	achieve	the	same	results	when	querying	a	database,	but
some	ways	are	better	than	others.	In	this	item,	we	look	at	using	joins	rather	than	subqueries.
Consider	the	data	model	shown	in	Figure	6.3.



Figure	6.3	Beer	Styles	data	model

If	we	wanted	a	list	of	all	of	the	beer	styles	that	are	associated	with	Belgium,	we	could	use	the
query	shown	in	Listing	6.16.

Listing	6.16	Selecting	beer	styles	from	Belgium	using	a	subquery

SELECT	StyleNm
FROM	Styles
WHERE	CountryFK	IN	(
		SELECT	CountryID
		FROM	Countries
		WHERE	CountryNM	=	'Belgium'
		);

This	would	appear	to	be	a	reasonable	way	to	solve	the	problem.	“Get	the	facts	from	table	A,
conditional	on	the	facts	from	table	B”	makes	logical	sense.	Because	Styles	contains
CountryFK,	not	CountryNM,	you	first	run	a	subquery	against	Countries	to	determine	the
value	of	the	ID,	then,	by	using	the	IN	clause,	you	determine	the	styles	that	have	that	value.
However,	note	that	the	entire	subquery	must	be	processed	before	the	overall	query	can	evaluate
the	IN	clause	to	match	the	values	in	the	Styles	table	to	the	values	returned	by	the	subquery.
Unless	the	table	in	the	subquery	is	very	small	(which	fortunately	it	is	in	this	case!),	it	is	generally
more	efficient	to	use	a	join,	as	shown	in	Listing	6.17,	because	the	database	engine	is	usually	able
to	optimize	it	better.

Listing	6.17	Selecting	beer	styles	from	Belgium	using	JOIN

Click	here	to	view	code	image

SELECT	s.StyleNm
FROM	Styles	AS	s
		INNER	JOIN	Countries	AS	c
				ON	s.CountryFK	=	c.CountryID
WHERE	c.CountryNM	=	'Belgium';

A	caveat	about	using	joins	needs	to	be	noted.	Though	the	query	in	Listing	6.17	is	identical	to	the
query	in	Listing	6.16,	it	is	important	to	keep	in	mind	that	a	join	can	potentially	change	the	output.
So	if	there	are	duplicates	on	either	side	of	the	table	that	are	not	part	of	the	intended	outcome,	such
as	multiple	countries	named	Belgium,	this	might	not	return	the	desired	output.



Another	way	to	avoid	the	use	of	a	subquery	is	through	the	use	of	an	EXISTS	clause,	as	shown	in
Listing	6.18.	This	also	avoids	the	potential	problem	of	generating	duplicate	output	with	joins.

Listing	6.18	Selecting	beer	styles	from	Belgium	using	an	EXISTS	clause

Click	here	to	view	code	image

SELECT	s.StyleNm
FROM	Styles	AS	s
WHERE	EXISTS	(
		SELECT	NULL
		FROM	Countries
		WHERE	CountryNM	=	'Belgium'
				AND	Countries.CountryID	=	s.CountryFK
		);

Although	this	is	not	as	intuitive	as	the	join	or	using	the	subquery,	the	database	simply	needs	to
check	the	relationship	specified	to	return	true	or	false	as	opposed	to	having	to	evaluate	the	entire
subquery.	Also,	in	spite	of	the	fact	that	an	EXISTS	operator	expects	a	subquery,	the	optimizer
may	transform	it	into	a	semi-join	(discussed	in	Item	41,	“Know	the	difference	between	correlated
and	non-correlated	subqueries”).

Note
Realistically,	this	is	optimizer	specific,	DBMS	version	specific,	and	query	specific.
Some	optimizers	prefer	a	join	to	a	subquery,	and	some	may	go	the	other	way.	You
should	always	check	the	specifics	of	your	DBMS,	using	the	information	found	in
Chapter	7,	“Getting	and	Analyzing	Metadata.”

There	are	other	reasons	to	prefer	using	a	join.	Although	Countries	has	only	two	columns	in
this	example,	should	you	need	to	include	columns	from	the	second	table,	using	a	join	makes	that
possible.	In	addition,	if	there	is	a	possibility	that	the	foreign	key	might	not	have	a	value,	it	is	easy
to	use	a	left	join	to	retrieve	those	rows	that	match	the	criterion	or	do	not	have	a	value,	as	shown
in	Listing	6.19.

Listing	6.19	Selecting	beer	styles	from	Belgium	or	unknown	using	LEFT	JOIN

Click	here	to	view	code	image

SELECT	s.StyleNm
FROM	Styles	AS	s
		LEFT	JOIN	Countries	AS	c
				ON	s.CountryFK	=	c.CountryID
WHERE	c.CountryNM	=	'Belgium'
			OR	c.CountryNM	IS	NULL;

Note
See	Item	29,	“Correctly	filter	the	‘right’	side	of	a	‘left’	join,”	for	a	discussion	of	the
query	shown	in	Listing	6.19.



Things	to	Remember
	Do	not	always	assume	that	breaking	the	problem	down	sequentially	is	the	preferred	way.
SQL	works	best	with	a	set,	not	row	by	row.
	Test	the	specifics	of	how	the	optimizer	for	your	DBMS	handles	the	various	approaches	to
decide	on	the	preferred	solution.
	Make	sure	to	have	the	appropriate	indexes	for	any	joins.



7.	Getting	and	Analyzing	Metadata

Sometimes	just	data	is	not	enough.	You	need	data	about	data.	You	might	even	need	data	about	how
you	are	getting	the	data.	In	some	cases	it	might	even	be	convenient	to	get	the	metadata	using	SQL,
and	indeed,	you	can	for	several	vendors.	You	can	then	incorporate	the	results	into	your	other
scripts	such	as	conditionally	creating	a	table	only	if	it	is	not	already	created	and	so	forth.
Another	type	of	metadata	is	how	well	a	query	performs.	Though	in	principle	SQL	is	supposed	to
abstract	us	away	from	the	mechanics	of	locating	and	retrieving	data,	it	is	an	abstraction
nonetheless.	And	as	Joel	Spolsky1	has	written,	all	abstractions	are	leaky.	So	it	is	possible	to
write	a	query	that	forces	a	suboptimal	execution	plan,	and	thus	you	must	dig	into	the	physical
aspects	of	the	DBMS	product	to	understand	how	to	improve	the	performance.	This	chapter	will
get	you	started	on	the	basics,	though	because	it	is	product	specific,	it	is	at	most	a	starting	point
that	you	can	then	supplement	with	other	resources.

1.	Joel	Spolsky	is	a	software	engineer	and	writer,	author	of	Joel	on	Software	and	a	blog	of	the	same	name.

Item	44:	Learn	to	Use	Your	System’s	Query	Analyzer
You	have	read	in	many	of	the	items	in	this	book	that	certain	features	vary	from	DBMS	to	DBMS,
and	that	an	approach	that	might	work	well	on,	say,	Microsoft	SQL	Server	will	not	work	as	well
on,	say,	Oracle.	You	may	be	wondering	how	you	can	determine	which	approach	to	use	for	your
DBMS.	In	this	item	we	try	to	give	you	some	tools	to	help	you	make	your	decision.
Before	any	DBMS	can	execute	an	SQL	statement,	its	optimizer	has	to	determine	how	best	to	run
it.	It	does	this	by	creating	an	execution	plan,	which	it	then	follows	step	by	step.	You	can	think	of
the	optimizer	as	being	similar	to	a	compiler.	Compilers	convert	source	code	into	executable
programs;	optimizers	convert	SQL	statements	into	execution	plans.	Looking	at	the	execution	plan
for	a	particular	SQL	statement	you	intend	to	run	can	help	you	to	identify	performance	issues.

Note
Because	the	specifics	of	each	optimizer	vary	from	DBMS	to	DBMS	and	even	from
one	version	of	a	specific	DBMS	to	another,	we	cannot	go	in	depth	for	any	specific
database.	Consult	your	documentation	for	more	details.

IBM	DB2
Before	you	can	get	an	execution	plan	from	DB2,	you	need	to	ensure	that	certain	system	tables
exist.	If	they	do	not,	you	need	to	create	them.	You	can	run	the	code	in	Listing	7.1	to	create	these
tables	using	the	SYSINSTALLOBJECTS	procedure.

Listing	7.1	Creating	DB2	explain	tables

Click	here	to	view	code	image

CALL	SYSPROC.SYSINSTALLOBJECTS('EXPLAIN',	'C',
				CAST(NULL	AS	varchar(128)),	CAST(NULL	AS	varchar(128)))



Note
The	SYSPROC.SYSINSTALLOBJECTS	procedure	does	not	exist	in	DB2	for
z/OS.

After	you	have	installed	the	necessary	tables	in	the	SYSTOOLS	schema,	you	can	determine	the
execution	plan	for	any	SQL	statement	by	prefixing	the	statement	with	the	words	EXPLAIN	PLAN
FOR,	as	shown	in	Listing	7.2.

Listing	7.2	Creating	an	execution	plan	in	DB2

Click	here	to	view	code	image

EXPLAIN	PLAN	FOR	SELECT	CustomerID,	SUM(OrderTotal)
FROM	Orders
GROUP	BY	CustomerID;

Note	that	using	EXPLAIN	PLAN	FOR	does	not	actually	show	the	execution	plan.	What	it	does
is	store	the	plan	in	the	tables	created	by	Listing	7.1.
IBM	provides	some	tools	to	help	analyze	the	explain	information,	such	as	the	db2exfmt	tool	to
display	explain	information	in	formatted	output	and	the	db2expln	tool	to	see	the	access	plan
information	that	is	available	for	one	or	more	packages	of	static	SQL,	or	you	can	write	your	own
queries	against	the	explain	tables.	Writing	your	own	queries	allows	you	to	customize	the	output
and	lets	you	do	comparisons	among	different	queries,	or	executions	of	the	same	query	over	time,
but	it	does	require	knowledge	of	how	the	data	is	stored	in	the	explain	tables.	IBM	also	provides
the	capability	to	generate	a	diagram	of	the	current	access	plan	through	its	freely	downloadable
Data	Studio	tool	(version	3.1	and	later).	You	can	download	the	Data	Studio	tool	at	www-
03.ibm.com/software/products/en/data-studio.	Figure	7.1	illustrates	how	Data	Studio	displays	the
execution	plan	(using	the	term	“Access	Plan	Diagram”).

http://www-03.ibm.com/software/products/en/data-studio


Figure	7.1	IBM	Data	Studio	Access	Plan	Diagram

Microsoft	Access
Obtaining	an	execution	plan	in	Access	can	be	a	bit	of	an	adventure.	In	essence,	you	turn	on	a	flag
telling	the	database	engine	to	create	a	text	file,	SHOWPLAN.OUT,	every	time	it	compiles	a
query,	but	how	you	turn	that	flag	on	(and	where	SHOWPLAN.OUT	appears)	depends	on	the
version	of	Access	you	are	using.
Turning	the	flag	on	involves	updating	your	system	registry.	For	the	x86	version	of	Access	2013	on
an	x64	operating	system,	you	would	use	the	registry	key	shown	in	Listing	7.3.

Listing	7.3	Registry	key	to	turn	Show	Plan	on	for	Access	2013	x86	on	Windows	x64



Click	here	to	view	code	image

Windows	Registry	Editor	Version	5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Office
\15.0\Access	Connectivity	Engine\Engines\Debug]
"JETSHOWPLAN"="ON"

Note
The	.REG	files	that	can	be	used	to	update	your	registry	are	included	in	the	Microsoft
Access/Chapter	07	folder	on	the	GitHub	site
(https://github.com/TexanInParis/Effective-SQL).	Make	sure	to	read	the	name	of	the
file	carefully	to	ensure	that	you	use	the	correct	one	for	your	setup.

Note
As	mentioned,	the	exact	registry	key	varies	depending	on	the	version	of	Access
being	run,	and	whether	you	are	running	a	32-bit	or	64-bit	version	of	Access.	For
example,	for	Access	2013	on	an	x86	operating	system,	the	key	would	be
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\15.0\Access
Connectivity	Engine\Engines\Debug].	For	Access	2010	on	an	x64
operating	system,	it	would	be
[HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Office\14.0\Access
Connectivity	Engine\Engines\Debug].	For	Access	2010	on	an	x86
operating	system,	it	would	be
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\14.0\Access
Connectivity	Engine\Engines\Debug].

After	you	have	created	that	registry	entry,	you	simply	run	your	queries	as	usual.	Every	time	you
run	a	query,	the	Access	query	engine	writes	the	query’s	plan	to	a	text	file.	For	Access	2013,
SHOWPLAN.OUT	is	written	to	your	My	Documents	folder.	In	some	older	versions,	it	was
written	to	the	current	default	folder.
Once	you	have	analyzed	all	the	queries	you	wish,	remember	to	turn	off	the	flag	in	your	system
registry.	Again,	for	the	x86	version	of	Access	2013	on	an	x64	operating	system,	you	would	use
the	registry	key	shown	in	Listing	7.4,	but	the	exact	key	depends	on	whichever	one	you	used	to	turn
it	on.	Unfortunately,	there	is	no	built-in	tool	for	graphical	viewing	of	the	plan.

Listing	7.4	Registry	key	to	turn	Show	Plan	off	for	Access	2013	x86	on	Windows	x64

Click	here	to	view	code	image

Windows	Registry	Editor	Version	5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Office
\15.0\Access	Connectivity	Engine\Engines\Debug]
"JETSHOWPLAN"="OFF"

https://github.com/TexanInParis/Effective-SQL


Note
Former	Access	MVP	Sascha	Trowitzsch	has	written	a	free	Showplan	Capturer	tool
for	Access	2010	and	earlier,	which	can	be	downloaded	at
www.mosstools.de/index.php?option=com_content&view=article&id=54.	This	tool
allows	you	to	see	execution	plans	without	having	to	update	your	registry	and	locate
the	SHOWPLAN.OUT	file.

Microsoft	SQL	Server
SQL	Server	provides	several	ways	to	fetch	an	execution	plan.	A	graphical	representation	is	easily
accessible	in	the	Management	Studio,	but	because	some	of	the	information	is	visible	only	when
you	move	the	mouse	over	a	particular	operation,	it	is	harder	to	share	details	with	others.	Figure
7.2	shows	the	two	different	icons	on	the	toolbar,	which	can	be	used	to	produce	a	graphical
execution	plan.

Figure	7.2	How	to	produce	a	graphical	execution	plan	in	SQL	Server

Regardless	of	which	button	is	used	to	produce	the	plan,	you	will	end	up	with	a	diagram	similar	to
Figure	7.3	on	the	next	page.

Figure	7.3	Sample	SQL	Server	graphical	execution	plan

You	can	compare	two	queries	by	placing	the	SQL	for	both	queries	in	a	new	query	window,
highlighting	the	SQL	for	both,	and	then	clicking	the	Display	Estimated	Execution	Plan	button.
Management	Studio	shows	you	the	two	estimated	plans	in	the	results	window.	You	can	obtain	an

http://www.mosstools.de/index.php?option=com_content&view=article&id=54


XML	version	of	the	execution	plan	by	profiling	the	execution	of	an	SQL	statement.	You	run	the
code	in	Listing	7.5	on	the	next	page	to	enable	it.

Listing	7.5	Enabling	execution	profiling	in	SQL	Server

SET	STATISTICS	XML	ON;

After	you	have	enabled	profiling,	every	time	you	execute	a	statement,	you	will	get	an	extra	result
set.	For	example,	if	you	run	a	SELECT	statement,	you	will	get	two	result	sets:	the	result	of	the
SELECT	statement	first,	followed	by	the	execution	plan	in	a	well-formed	XML	document.

Note
It	is	possible	to	get	the	output	in	tabular	form,	rather	than	in	an	XML	document,	by
using	SET	STATISTICS	PROFILE	ON	(and	SET	STATISTICS	PROFILE
OFF).	Unfortunately,	the	tabular	execution	plan	can	be	hard	to	read,	especially	in
SQL	Server	Management	Studio,	because	the	information	contained	in	StmtText
is	too	wide	to	fit	on	a	screen.	However,	you	can	copy	the	information	and	reformat	it
to	make	it	more	useful.	Unlike	the	graphical	plan,	you	can	see	all	the	information	at
once.	We	recommend	the	use	of	XML	instead,	especially	because	Microsoft	has
indicated	that	SET	STATISTICS	PROFILE	will	be	deprecated.

After	you	have	captured	all	the	information	you	want,	you	can	disable	profiling	by	running	the
code	in	Listing	7.6.

Listing	7.6	Disabling	execution	profiling	in	SQL	Server

SET	STATISTICS	XML	OFF;

MySQL
Similar	to	the	case	for	DB2,	you	can	determine	the	execution	plan	for	any	SQL	statement	in
MySQL	by	prefixing	the	statement	with	the	word	EXPLAIN,	as	shown	in	Listing	7.7.	(Unlike	in
DB2,	you	do	not	have	to	do	anything	first	to	enable	the	action.)

Listing	7.7	Creating	an	execution	plan	in	MySQL

Click	here	to	view	code	image

EXPLAIN	SELECT	CustomerID,	SUM(OrderTotal)
FROM	Orders
GROUP	BY	CustomerID;

MySQL	shows	you	the	plan	in	tabular	form.	It	is	also	possible	to	use	the	“Visual	Explain”	feature
of	the	MySQL	Workbench	6.2	to	provide	a	visualization	of	the	execution	plan,	as	demonstrated	in
Figure	7.4.



Figure	7.4	MySQL	Workbench	execution	plan	pane

Oracle
To	view	an	execution	plan	in	Oracle,	perform	these	two	steps:

1.	Save	the	execution	plan	in	the	PLAN_TABLE.
2.	Format	and	display	the	execution	plan.

To	create	the	execution	plan,	you	prefix	the	SQL	statement	with	the	keywords	EXPLAIN	PLAN
FOR,	as	shown	in	Listing	7.8.

Listing	7.8	Creating	an	execution	plan	in	Oracle

Click	here	to	view	code	image



EXPLAIN	PLAN	FOR	SELECT	CustomerID,	SUM(OrderTotal)
FROM	Orders
GROUP	BY	CustomerID;

As	was	the	case	for	DB2,	executing	the	EXPLAIN	PLAN	FOR	command	does	not	actually	show
the	plan.	Instead,	the	system	saves	the	plan	into	a	table	named	PLAN_TABLE.	You	should	note
that	the	EXPLAIN	PLAN	FOR	command	may	not	necessarily	create	the	same	execution	plan	that
the	system	will	use	when	executing	the	statement.

Note
The	PLAN_TABLE	table	is	automatically	available	as	a	global	temporary	table	in
release	10g	and	later.	For	previous	releases,	it	is	necessary	to	create	the	table	in
each	schema	as	needed.	You	or	your	database	administrator	can	execute	the	CREATE
TABLE	statement	from	the	Oracle	database	installation
($ORACLE_HOME/rdbms/admin/utlxplan.sql)	in	any	desired	schema.

Although	it	is	easy	to	show	execution	plans	in	the	Oracle	development	environment,	how	they	are
formatted	can	vary.	A	package	DBMS_XPLAN	was	introduced	with	release	9iR2	that	can	be	used
to	format	and	display	execution	plans	from	the	PLAN_TABLE.	For	example,	the	statement	in
Listing	7.9	shows	how	to	display	the	most	recent	execution	plan	created	in	the	current	database
session.

Listing	7.9	Displaying	the	last	execution	plan	explained	in	the	current	Oracle	database	session

Click	here	to	view	code	image

SELECT	*	FROM	TABLE(dbms_xplan.display)

Different	tools	can	display	the	execution	plan	information	differently.	For	example,	Oracle	SQL
Developer	provides	the	ability	to	display	the	execution	plan	information	in	a	treelike	fashion,	as
illustrated	in	Figure	7.5.



Figure	7.5	Oracle	SQL	Developer’s	Explain	Plan	tab

Note	that	some	tools	are	known	not	to	display	all	of	the	information,	even	though	it	may	exist	in
the	PLAN_TABLE.

Note
There	are	cases	when	the	plan	generated	by	EXPLAIN	PLAN	FOR	and	the	actual
runtime	plan	do	not	match,	for	example,	when	there	are	BIND	variables	with	data
skew.	We	advise	you	to	read	the	Oracle	documentation.

PostgreSQL
You	can	display	execution	plans	in	PostgreSQL	by	prefixing	the	SQL	statement	with	the	keyword



EXPLAIN,	as	shown	in	Listing	7.10	on	the	next	page.

Listing	7.10	Creating	an	execution	plan	in	PostgreSQL

Click	here	to	view	code	image

EXPLAIN	SELECT	CustomerID,	SUM(OrderTotal)
FROM	Orders
GROUP	BY	CustomerID;

You	can	follow	the	EXPLAIN	keyword	with	one	of	these	options:
	ANALYZE:	Carry	out	the	command	and	show	actual	run	times	and	other	statistics	(defaults
to	FALSE).
	VERBOSE:	Display	additional	information	regarding	the	plan	(defaults	to	FALSE).
	COSTS:	Include	information	on	the	estimated	start-up	and	total	cost	of	each	plan	node,	as
well	as	the	estimated	number	of	rows	and	the	estimated	width	of	each	row	(defaults	to
TRUE).
	BUFFERS:	Include	information	on	buffer	usage.	May	be	used	only	when	ANALYZE	is	also
enabled	(defaults	to	FALSE).
	TIMING:	Include	the	actual	start-up	time	and	time	spent	in	the	node	in	the	output.	May	be
used	only	when	ANALYZE	is	also	enabled	(defaults	to	TRUE).
	FORMAT:	Specify	the	output	format,	which	can	be	TEXT,	XML,	JSON,	or	YAML	(defaults
to	TEXT).

It	is	important	to	note	that	SQL	statements	with	BIND	parameters	(e.g.,	$1,	$2,	etc.)	must	be
prepared	first,	as	shown	in	Listing	7.11.

Listing	7.11	Preparing	a	bound	SQL	statement	in	PostgreSQL

Click	here	to	view	code	image

SET	search_path	=	SalesOrdersSample;

PREPARE	stmt	(int)	AS
SELECT	*	FROM	Customers	AS	c
WHERE	c.CustomerID	=	$1;

After	the	statement	has	been	prepared,	its	execution	can	be	explained	using	the	statement	shown	in
Listing	7.12.

Listing	7.12	Explaining	a	prepared	SQL	statement	in	PostgreSQL

EXPLAIN	EXECUTE	stmt(1001);

Note
In	PostgreSQL	9.1	version	and	older,	the	execution	plan	was	created	with	the
PREPARE	call,	so	it	could	not	consider	the	actual	values	provided	with	the



EXECUTE	call.	Since	PostgreSQL	9.2,	the	execution	plan	is	not	created	until
execution,	so	it	can	consider	the	actual	values	for	the	BIND	parameters.

PostgreSQL	also	provides	the	pgAdmin	tool	that	can	be	used	to	provide	a	graphical
representation	of	the	execution	plan	via	the	Explain	tab,	as	Figure	7.6	shows.

Figure	7.6	PostgreSQL	pgAdmin	Explain	tab

Things	to	Remember



	Learn	how	to	obtain	execution	plans	for	your	DBMS.
	Consult	the	documentation	for	your	DBMS	to	learn	how	to	interpret	the	execution	plans	it
produces.
	Remember	that	the	information	shown	in	execution	plans	can	change	over	time.
	DB2	requires	that	system	tables	be	created	first.	It	stores	the	execution	plans	in	those
system	tables,	as	opposed	to	displaying	them.	It	produces	estimated	plans.
	Access	requires	that	a	registry	key	be	installed.	It	stores	the	execution	plans	in	an	external
text	file	and	produces	actual	plans.
	SQL	Server	requires	no	initialization	to	display	execution	plans.	You	have	the	choice	of
displaying	the	plans	graphically	or	in	tabular	form.	You	also	have	the	choice	of	producing
estimated	plans	or	actual	plans.
	MySQL	requires	no	initialization	to	display	execution	plans.	It	displays	the	execution	plans
to	you	and	produces	estimated	plans.
	Oracle	requires	no	initialization	to	display	execution	plans	in	release	10g	and	later,
although	you	need	to	create	system	tables	in	each	schema	of	interest	for	earlier	releases.	It
only	stores	the	execution	plans	in	system	tables,	as	opposed	to	displaying	them.	It	produces
estimated	plans.
	PostgreSQL	requires	no	initialization	to	display	execution	plans.	It	does,	however,	require
you	to	prepare	SQL	statements	that	have	BIND	parameters	in	them.	It	displays	the	execution
plan	for	you.	For	basic	SQL	statements,	it	produces	estimated	plans.	For	prepared	SQL
statements,	in	version	9.1	and	older,	it	produces	estimated	plans,	but	since	9.2	it	produces
actual	plans.

Item	45:	Learn	to	Get	Metadata	about	Your	Database
Metadata	is	simply	“data	about	data.”	Although	you	may	well	have	designed	an	ideal	logical
database	model	and	worked	hard	with	the	DBAs	to	ensure	a	proper	physical	database	model
(ideally	using	techniques	you	have	read	in	this	book!),	it	is	often	nice	to	be	able	to	step	back	and
ensure	that	things	were,	in	fact,	implemented	consistently	with	your	design.	That	is	where
metadata	can	help.
ISO/IEC	9075-11:2011	Part	11:	Information	and	Definition	Schemas	(SQL/Schemata)	is	an	often-
overlooked	part	of	the	official	SQL	Standards.	This	standard	defines	the
INFORMATION_SCHEMA,	which	is	intended	to	make	SQL	databases	and	objects	self-
describing.
When	a	physical	data	model	is	implemented	in	a	compliant	DBMS,	not	only	are	each	of	the
objects	such	as	tables,	columns,	and	views	created	in	the	database,	but	also	your	system	stores
information	about	each	of	those	objects	in	system	tables.	A	set	of	read-only	views	exists	on	those
system	tables,	and	those	views	can	provide	information	about	all	the	tables,	views,	columns,
procedures,	constraints,	and	everything	else	necessary	to	re-create	the	structure	of	a	database.

Note
Although	INFORMATION_SCHEMA	is	an	official	standard	of	the	SQL	language,	the



standard	is	not	always	followed.	While	IBM	DB2,	Microsoft	SQL	Server,	MySQL,
and	PostgreSQL	all	provide	INFORMATION_SCHEMA	views,	Microsoft	Access
and	Oracle	do	not	at	present	(although	Oracle	does	provide	internal	metadata	that
can	serve	the	same	needs).

There	are	a	variety	of	third-party	products	that	can	provide	you	with	information	about	your
database.	Most	of	them	do	so	by	retrieving	information	from	the	INFORMATION_SCHEMA
views.	You	do	not	need	a	third-party	tool,	though,	to	be	able	to	get	useful	information	from	those
views.
Let’s	assume	you	have	been	given	access	to	a	new	database,	and	you	want	to	find	out	details
about	it.
You	can	query	the	INFORMATION_SCHEMA.TABLES	view	to	get	a	list	of	the	tables	and	views
that	exist	in	the	database,	as	shown	in	Listing	7.13,	the	results	of	which	are	shown	in	Table	7.1.

Listing	7.13	Get	a	list	of	tables	and	views

Click	here	to	view	code	image

SELECT	t.TABLE_NAME,	t.TABLE_TYPE
FROM	INFORMATION_SCHEMA.TABLES	AS	t
WHERE	t.TABLE_TYPE	IN	('BASE	TABLE',	'VIEW');

Table	7.1	List	of	tables	and	views	from	Listing	7.13

You	can	query	the	INFORMATION_SCHEMA	TABLE_CONSTRAINTS	view	to	get	a	list	of
what	constraints	have	been	created	on	those	tables,	as	shown	in	Listing	7.14,	with	results	shown
in	Table	7.2	on	the	next	page.

Listing	7.14	Get	a	list	of	constraints

Click	here	to	view	code	image

SELECT	tc.CONSTRAINT_NAME,	tc.TABLE_NAME,	tc.CONSTRAINT_TYPE
FROM	INFORMATION_SCHEMA.TABLE_CONSTRAINTS	AS	tc;



Table	7.2	List	of	constraints	from	Listing	7.14

Yes,	there	are	definitely	other	ways	to	obtain	that	same	information.	However,	the	fact	that	the
information	is	available	in	views	allows	you	to	determine	more	information.	For	example,	since
you	know	all	of	the	tables	in	your	database	and	you	know	all	of	the	table	constraints	that	have
been	defined,	you	can	easily	determine	which	tables	in	your	database	do	not	have	a	primary	key,
as	shown	in	Listing	7.15,	with	results	shown	in	Table	7.3.

Listing	7.15	Get	a	list	of	tables	without	a	primary	key

Click	here	to	view	code	image

SELECT	t.TABLE_NAME
FROM	(
		SELECT	TABLE_NAME
		FROM	INFORMATION_SCHEMA.TABLES
		WHERE	TABLE_TYPE	=	'BASE	TABLE'
		)	AS	t
		LEFT	JOIN	(
				SELECT	TABLE_NAME,	CONSTRAINT_NAME,	CONSTRAINT_TYPE
				FROM	INFORMATION_SCHEMA.TABLE_CONSTRAINTS
				WHERE	CONSTRAINT_TYPE	=	'PRIMARY	KEY'
				)	AS	tc
						ON	t.TABLE_NAME	=	tc.TABLE_NAME
WHERE	tc.TABLE_NAME	IS	NULL;

Table	7.3	List	of	tables	without	a	primary	key	from	Listing	7.15

Should	you	be	considering	making	a	change	to	a	particular	column,	you	can	use	the
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE	view	to	see	which	table	columns	are
being	used	in	any	view,	as	shown	in	Listing	7.16.

Listing	7.16	Get	a	list	of	all	tables	and	columns	used	in	any	view

Click	here	to	view	code	image

SELECT	vcu.VIEW_NAME,	vcu.TABLE_NAME,	vcu.COLUMN_NAME
FROM	INFORMATION_SCHEMA.VIEW_COLUMN_USAGE	AS	vcu;

As	shown	in	Table	7.4,	it	does	not	matter	whether	or	not	you	have	used	an	alias	for	any	of	the
column	names,	or	even	if	the	column	appears	only	in	the	WHERE	or	ON	clause	of	the	view.	This



information	allows	you	to	see	quickly	whether	your	possible	change	might	have	any	impacts.

Table	7.4	List	of	all	tables	and	columns	used	in	any	view	from	Listing	7.16

Listing	7.17	shows	the	SQL	used	to	create	the	BeerStyles	view.	You	can	see	that
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE	reports	on	all	columns	used,	whether	they
are	in	the	SELECT	clause,	the	ON	clause,	or	anywhere	else	in	the	CREATE	VIEW	statement.

Listing	7.17	CREATE	VIEW	statement	for	the	view	documented	in	Table	7.4

Click	here	to	view	code	image

CREATE	VIEW	BeerStyles	AS
SELECT	Cat.CategoryDS	AS	Category,	Cou.CountryNM	AS	Country,
		Sty.StyleNM	AS	Style,	Sty.ABVHighNb	AS	MaxABV
FROM	Styles	AS	Sty
		INNER	JOIN	Categories	AS	Cat
				ON	Sty.CategoryFK	=	Cat.CategoryID
		INNER	JOIN	Countries	AS	Cou
				ON	Sty.CountryFK	=	Cou.CountryID;

A	major	advantage	of	using	INFORMATION_SCHEMA	rather	than	DBMS-specific	metadata
tables	is	that	because	INFORMATION_SCHEMA	is	an	SQL	standard,	any	queries	you	write
should	be	portable	from	DBMS	to	DBMS,	as	well	as	from	release	to	release	of	any	specific
DBMS.
That	being	said,	you	should	probably	be	aware	that	there	can	be	issues	with	using
INFORMATION_SCHEMA.	For	one	thing,	despite	being	a	standard,	INFORMATION_SCHEMA
is	not	actually	implemented	consistently	from	DBMS	to	DBMS.	The
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE	view	that	we	showed	in	Listing	7.16	does
not	exist	in	MySQL,	but	it	does	in	SQL	Server	and	PostgreSQL.
Additionally,	because	INFORMATION_SCHEMA	is	a	standard,	it	is	designed	to	document	only
features	that	exist	in	the	standards.	And	even	when	the	feature	is	permitted,	it	is	still	possible	that



INFORMATION_SCHEMA	may	not	be	capable	of	documenting	it.	An	example	of	this	is	creating
FOREIGN	KEY	constraints	that	reference	unique	indexes	(as	opposed	to	primary	key	indexes).
Usually	you	would	document	FOREIGN	KEY	constraints	by	joining	the
REFERENTIAL_CONSTRAINTS,	TABLE_CONSTRAINTS,	and
CONSTRAINT_COLUMN_USAGE	views	in	INFORMATION_SCHEMA,	but	because	a	unique
index	is	not	a	constraint,	there	is	no	data	in	TABLE_CONSTRAINTS	(or	in	any	other	constraint-
related	view),	and	you	cannot	determine	which	columns	are	used	in	the	“constraint.”
Fortunately,	all	DBMSs	have	other	metadata	sources	available,	and	you	can	use	them	to	determine
information	as	well.	The	downside,	of	course,	is	that	what	you	have	learned	that	works	in	one
DBMS	may	not	work	in	another	DBMS.
For	instance,	you	could	retrieve	the	same	information	retrieved	in	Listing	7.13	in	SQL	Server
using	the	SQL	statement	in	Listing	7.18.

Listing	7.18	Get	a	list	of	tables	and	views	using	SQL	Server	system	tables

Click	here	to	view	code	image

SELECT	name,	type_desc
FROM	sys.objects
WHERE	type_desc	IN	('USER_TABLE',	'VIEW');

Alternatively	you	can	use	the	SQL	statement	in	Listing	7.19	to	get	the	same	information	in	SQL
Server	as	provided	by	Listing	7.18.

Listing	7.19	Get	a	list	of	tables	and	views	using	different	SQL	Server	system	tables

SELECT	name,	type_desc
FROM	sys.tables
UNION
SELECT	name,	type_desc
FROM	sys.views;

It	is	perhaps	telling	that	even	Microsoft	seems	not	to	trust	INFORMATION_SCHEMA:	there	are
many	places	on	MSDN,	such	as	https://msdn.microsoft.com/en-us/library/ms186224.aspx,	where
they	state:

**Important**	Do	not	use	INFORMATION_SCHEMA	views	to	determine	the
schema	of	an	object.	The	only	reliable	way	to	find	the	schema	of	an	object	is	to	query
the	sys.objects	catalog	view.	INFORMATION_SCHEMA	views	could	be	incomplete
because	they	are	not	updated	for	all	new	features.

Note
Many	DBMSs	offer	alternative	means	of	getting	to	their	metadata.	For	example,	DB2
has	a	db2look	command,	MySQL	has	a	SHOW	command,	Oracle	has	a	DESCRIBE
command,	and	PostgreSQL’s	command-line	interface	psql	has	a	\d	command,	all	of
which	can	be	used	to	query	data.	Consult	your	documentation	to	determine	what
options	you	have.	However,	those	commands	do	not	permit	you	to	query	the	metadata

https://msdn.microsoft.com/en-us/library/ms186224.aspx


using	SQL	as	shown	in	the	previous	listings,	so	also	check	the	documentation	for
system	tables	or	schema	if	you	need	to	collect	information	from	several	objects	at
once	or	within	the	context	of	an	SQL	query.

Things	to	Remember
	Use	the	SQL	standard	INFORMATION_SCHEMA	views	whenever	possible.
	Remember	that	INFORMATION_SCHEMA	is	not	the	same	across	DBMSs.
	Learn	any	nonstandard	command	your	DBMS	may	have	to	display	metadata.
	Accept	that	INFORMATION_SCHEMA	does	not	contain	100%	of	the	necessary	metadata,
and	learn	the	system	tables	associated	with	your	DBMS.

Item	46:	Understand	How	the	Execution	Plan	Works
Because	this	is	a	book	about	SQL,	and	not	about	any	particular	vendor’s	product,	it	is	difficult	to
be	very	specific,	because	the	execution	plan	is	dependent	on	the	physical	implementation.	Each
vendor	has	a	different	implementation	and	uses	different	terminology	for	the	same	concepts.
However,	it	is	an	essential	skill	for	anyone	working	with	an	SQL	database	to	understand	how	to
read	and	understand	what	an	execution	plan	means	in	order	to	be	able	to	optimize	SQL	queries	or
make	any	needed	schema	changes,	especially	on	indices	or	model	design.	Thus	we	will	focus	on
some	general	principles	that	you	might	find	useful	when	reading	an	execution	plan	for	your	SQL
database,	regardless	of	which	vendor’s	product	you	use.	This	item	is	intended	to	be	supplemented
with	additional	readings	in	the	vendor’s	documentation	on	reading	and	interpreting	the	execution
plan.
We	also	want	to	remind	readers	that	the	goal	of	SQL	is	to	free	developers	from	the	menial	task	of
describing	the	physical	steps	to	retrieve	the	data,	especially	in	an	efficient	manner.	It	is	meant	to
be	declarative,	describing	what	data	we	want	to	get	back	and	leaving	it	up	to	the	optimizer	to
figure	out	the	best	way	to	get	it.	When	we	discuss	execution	plans,	and	therefore	the	physical
implementation,	we	are	breaking	the	abstraction	that	SQL	offers.
A	common	mistake	that	even	computer-literate	people	make	is	to	assume	that	because	a	task	is
done	by	a	computer,	it	is	magically	different	from	the	way	it	would	be	done	by	a	person.	It	just
ain’t	so.	Yes,	a	computer	might	execute	and	complete	a	task	much	faster	and	more	accurately,	but
the	physical	steps	it	must	take	are	no	different	from	those	of	an	actual	person	doing	the	same	task.
Consequently,	when	you	read	an	execution	plan,	you	get	an	outline	of	physical	steps	the	database
engine	performs	to	satisfy	a	query.	You	can	then	ask	yourself,	if	you	were	doing	it	yourself,
whether	you	would	get	the	best	result.
Consider	a	card	catalog	in	a	library.	If	you	wanted	to	locate	a	book	named	Effective	SQL,	you
would	go	to	the	catalog	and	locate	the	drawer	that	contains	cards	for	books	starting	with	the	letter
E	(maybe	it	will	actually	be	labeled	D–G).	You	would	then	open	the	drawer	and	flip	through	the
index	cards	until	you	find	the	card	you	are	looking	for.	The	card	says	the	book	is	located	at
601.389,	so	you	must	then	locate	the	section	somewhere	within	the	library	that	houses	the	600
class.	Arriving	there,	you	have	to	find	the	bookshelves	holding	600–610.	After	you	have	located
the	correct	bookshelves,	you	have	to	scan	the	sections	until	you	get	to	601,	and	then	scan	the



shelves	until	you	find	the	601.3XX	books	before	pinpointing	the	book	with	601.389.
In	an	electronic	database	system,	it	is	no	different.	The	database	engine	needs	to	first	access	its
index	on	data,	locate	the	index	page(s)	that	contains	the	letter	E,	then	look	within	the	page	to	get
the	pointer	back	to	the	data	page	that	contains	the	sought	data.	It	will	jump	to	the	address	of	the
data	page	and	read	the	data	within	that	page(s).	Ergo,	an	index	in	a	database	is	just	like	the
catalog	in	a	library.	Data	pages	are	just	like	bookshelves,	and	the	rows	are	like	the	books
themselves.	The	drawers	in	the	catalog	and	the	bookshelves	represent	the	B-tree	structure	for	both
index	and	data	pages.
We	made	you	walk	through	this	to	emphasize	the	point	that	when	you	read	the	execution	plan,	you
can	easily	apply	the	physical	action,	as	though	you	were	doing	the	same	thing	with	papers,
folders,	books	and	index	cards,	labels,	and	the	classification	system.	Let’s	do	one	more	thought
experiment.	Now	that	you	have	found	the	Effective	SQL	book	that	John	Viescas	coauthored,	you
want	to	find	out	what	other	books	he	has	written.	You	cannot	go	back	to	the	catalog	because	that
catalog	sorts	the	index	cards	by	book	title,	not	by	author.	Without	a	catalog	available,	the	only
way	to	answer	the	question	is	to	painstakingly	go	through	every	bookshelf,	each	of	the	shelves,
and	each	book	to	see	what	other	books	John	has	authored.	If	you	found	that	such	questions	were
commonly	asked,	it	would	be	more	expedient	to	build	a	new	catalog,	sorted	by	author,	and	put	it
beside	the	original	catalog.	Now	it	is	easy	to	find	all	books	that	John	has	authored	or	coauthored
just	by	looking	in	the	new	catalog—no	more	trips	to	the	bookshelves.	But	what	if	the	question
changes	and	is	now	“How	many	pages	are	there	in	each	book	that	John	wrote?”	Well,	that	extra
piece	of	information	is	not	in	the	index	cards.	So	it	is	back	to	the	bookshelves	to	find	out	the	page
counts	in	each	book.
This	illustrates	the	next	key	point:	the	index	system	you	set	up	depends	heavily	on	what	kind	of
queries	you	will	typically	use	against	your	database.	You	needed	two	catalogs	to	support	different
types	of	queries.	Even	so,	there	were	still	some	gaps.	Is	the	correct	answer	to	add	page	counts	to
the	index	cards	in	one	of	the	catalogs?	Maybe,	maybe	not.	It	depends	more	on	whether	it	is
essential	that	you	get	the	information	quickly.
It	is	also	possible	to	have	queries	where	you	never	need	to	actually	go	to	the	bookshelves.	For
example,	if	you	wanted	a	list	of	all	authors	with	whom	John	has	written	books,	you	could	look	up
all	books	that	John	has	co-written,	but	the	catalog	does	not	list	the	other	authors	for	those	books.
But	you	can	then	look	in	the	book	titles	catalog,	look	up	the	title	that	you	got	from	the	author
catalog,	and	thus	get	the	list	of	coauthors.	You	were	able	to	do	all	this	standing	at	the	catalogs
without	going	to	the	bookshelves	at	all.	Thus,	this	is	the	fastest	way	to	retrieve	data.
The	preceding	thought	experiments	should	make	it	clear	that	when	you	read	the	execution	plan,
you	can	act	out	the	physical	actions	in	your	mind.	So,	if	you	saw	an	execution	plan	that	scans	a
table,	and	you	know	you	have	an	index	that	exists	but	apparently	is	not	used	in	the	plan	(as	though
you	had	walked	past	the	catalog	and	gone	directly	to	the	bookshelves),	you	can	tell	something	is
amiss	and	start	your	analysis.

Note
The	examples	provided	in	the	rest	of	the	items	are	heavily	dependent	on	the	data
stored	in	the	database,	the	existing	index	structure,	and	other	things.	Therefore,	it
might	not	always	be	possible	to	reproduce	the	exact	same	execution	plan.	The



examples	also	use	the	Microsoft	SQL	Server	execution	plan,	as	it	provides	a
graphical	view.	Other	vendors	might	yield	similar	plans	but	use	different	terms.

With	the	mental	scaffolding	set	up,	let’s	look	at	some	examples,	starting	with	Listing	7.20.

Listing	7.20	Query	to	find	customers’	cities	based	on	an	area	code

SELECT	CustCity
FROM	Customers
WHERE	CustAreaCode	=	530;

In	a	large	enough	table,	we	might	get	the	plan	illustrated	in	Figure	7.7.

Figure	7.7	Initial	execution	plan	with	a	key	lookup

To	translate	this	into	physical	actions,	think	of	it	as	going	to	a	catalog	containing	the
CustAreaCode	and	location	code	on	the	index	cards.	For	each	index	card	found,	we	then	go	to
the	bookshelves,	locate	the	record	to	read	the	CustCity	value,	then	return	to	the	catalog	to	read
the	next	index.	That	is	what	is	meant	when	you	see	a	“Key	Lookup”	operation.	An	“Index	Seek”
operation	represents	looking	through	the	catalog,	whereas	“Key	Lookup”	means	you	are	going	to
the	bookshelves	to	get	the	additional	information	that	is	not	contained	on	the	index	card.
For	a	table	with	few	records,	it	is	not	that	bad.	But	if	it	turns	out	that	we	found	many	index	cards
and	shuttled	between	the	bookshelves	and	the	catalog,	that	is	a	lot	of	wasted	time.	Let’s	say	there
are	several	possible	matches.	If	the	query	is	commonly	asked,	it	makes	sense	to	update	the	index
to	include	the	CustCity.	One	way	to	do	this	is	with	the	SQL	statement	in	Listing	7.21.

Listing	7.21	Improved	index	definition

Click	here	to	view	code	image

CREATE	INDEX	IX_Customers_CustArea
ON	Customers	(CustAreaCode,	CustCity);

This	changes	the	execution	plan	to	what	is	shown	in	Figure	7.8	for	the	same	query.

Figure	7.8	Example	of	splitting	data	into	tables	by	subject

So	we	are	back	to	standing	at	the	new	catalog	and	reading	through	the	index	cards	without	going
to	the	bookshelves	at	all.	That	is	much	more	efficient	even	though	we	now	have	one	more	catalog



in	the	library.
It	is	also	important	to	note	that	sometimes	the	physical	steps	described	by	a	generated	execution
plan	can	be	quite	different	from	the	logical	steps	described	by	the	SQL	query	itself.	Consider	the
query	that	does	an	EXISTS	correlated	subquery	in	Listing	7.22.

Listing	7.22	Query	to	find	customers	who	have	not	placed	any	orders

Click	here	to	view	code	image

SELECT	p.*
FROM	Products	AS	p
WHERE	NOT	EXISTS	(
				SELECT	NULL
				FROM	Order_Details	AS	d
				WHERE	p.ProductNumber	=	d.ProductNumber
				);

At	a	glance,	it	looks	as	if	the	engine	must	query	the	subquery	for	each	row	in	the	Products
table	because	we	are	using	a	correlated	subquery.	Let’s	consider	the	execution	plan	in	Figure	7.9.

Figure	7.9	Execution	plan	for	a	query	with	a	correlated	NOT	EXISTS	subquery

To	translate	the	execution	plan	into	physical	actions:	with	“Clustered	Index	Scan”	on
Products,	we	first	grab	a	stack	of	index	cards	from	one	catalog	that	detail	the	products	we
have	on	hand.	With	“Index	Scan”	on	Order_Details,	we	grab	another	stack	of	index	cards
from	the	catalog	containing	orders.	For	“Stream	Aggregate,”	we	group	all	index	cards	containing
the	same	ProductNumber.	Then	for	“Merge	Join,”	we	sort	through	both	stacks,	taking	out	a
product	index	card	only	if	we	do	not	have	a	matching	card	from	the	Order_Details	stack.
That	gives	us	the	answer.	Take	note	that	the	merge	join	is	a	“left	anti-semi-join”;	this	is	a
relational	operation	that	has	no	direct	representation	in	the	SQL	language.	Conceptually,	a	semi-
join	is	like	a	join	except	that	you	select	a	row	that	matches	only	once	rather	than	for	all	matching
rows.	Therefore,	an	anti-semi-join	selects	distinct	rows	that	do	not	match	the	other	side.
So	in	this	specific	example,	the	engine	was	smart	enough	to	see	a	better	way	of	doing	things	and
rearranged	the	execution	plan	accordingly.	However,	it	bears	emphasizing	that	the	engine	itself	is



constrained	by	the	user	asking	the	queries.	If	we	send	it	poorly	written	queries,	it	has	no	choice
but	to	generate	poor	execution	plans.
When	you	read	your	execution	plans,	you	check	whether	the	engine	is	making	sane	choices	as	to
how	it	should	collect	the	data	and	doing	it	in	the	most	efficient	manner.	Because	the	execution
plan	is	a	sequence	of	physical	actions,	it	can	vary	drastically	even	for	the	same	query	if	the	data
volume	and	distribution	change.	For	example,	using	the	same	query	from	Listing	7.22	on	a	smaller
set	of	data,	we	might	get	the	plan	shown	in	Figure	7.10.

Figure	7.10	Another	possible	execution	plan	for	a	query	with	a	correlated	NOT	EXISTS
subquery

What	is	not	apparent	is	that	the	“Index	Seek”	on	the	Order_Details	table	has	a	predicate	to
take	a	value	from	the	“Clustered	Index	Scan”	on	the	Products	table.	The	“Top”	operation	then
restricts	the	output	to	only	one	row	and	matches	to	the	records	from	the	Products	table.	This	is
similar	to	the	key	lookup	we	saw	earlier.	Because	the	data	set	was	small	enough,	the	database
engine	decided	it	was	good	enough	to	do	a	key	lookup	instead	of	taking	a	stack,	because	that	is
less	setup	to	do.
That	then	brings	us	to	the	problem	of	“elephant	and	mouse.”	By	now	you	should	realize	that	there
are	many	possible	sequences	of	physical	actions	to	get	the	same	results.	However,	which
sequence	is	more	effective	depends	on	the	data	distribution.	So	it	is	possible	to	have	a
parameterized	query	that	performs	great	for	a	particular	value	but	is	awful	with	a	different	value.
This	is	a	particular	problem	for	any	engines	that	cache	an	execution	plan	for	a	parameterized
query	(which	might	be	a	stored	procedure,	for	instance).	Consider	the	simple	parameterized	query
in	Listing	7.23.

Listing	7.23	Query	to	find	order	details	for	a	particular	product

Click	here	to	view	code	image

SELECT	o.OrderNumber,	o.CustomerID
FROM	Orders	AS	o
WHERE	EmployeeID	=	?;



Suppose	we	pass	in	EmployeeID	=	751.	That	employee	made	99	orders	out	of	160,944	rows
in	the	Orders	table.	Because	there	are	comparatively	few	records,	the	engine	might	create	a
plan	like	the	one	in	Figure	7.11.

Figure	7.11	Execution	plan	for	few	records	in	an	index

Contrast	that	with	the	plan	where	we	pass	in	EmployeeID	=	708	who	has	worked	on	5,414
orders	in	Figure	7.12.

Figure	7.12	Execution	plan	for	a	large	number	of	records	in	an	index

Because	the	engine	saw	that	there	were	so	many	records	scattered,	it	decided	it	was	just	as	fast	to
wade	through	all	the	data.	This	is	obviously	suboptimal,	and	we	can	improve	it	by	adding	an
index	specifically	for	this	query	as	shown	in	Listing	7.24.

Listing	7.24	Index	to	cover	the	query	in	Listing	7.23

Click	here	to	view	code	image

CREATE	INDEX	IX_Orders_EmployeeID_Included
ON	Orders	(EmployeeID)
INCLUDE	(OrderNumber,	CustomerID);

Because	the	index	covers	both	queries,	this	improves	the	plan	for	both	“mouse”	and	“elephant”
significantly,	as	shown	in	Figure	7.13.

Figure	7.13	Improved	execution	plan	for	the	query	in	Listing	7.23

However,	this	might	not	be	possible	in	all	cases.	In	a	complicated	query,	it	might	not	make	sense
to	create	an	index	that	would	be	usable	in	only	one	query.	You	want	to	have	an	index	that	is	useful
in	several	queries.	For	that	reason,	you	might	elect	to	modify	the	columns	indexed	or	included	in
an	index	and	even	exclude	some.
In	those	situations,	the	“mouse	and	elephant”	problem	can	still	appear	for	parameterized	queries.
In	those	situations,	it	is	likely	best	to	recompile	the	queries,	because	compilation	of	a	query	is
usually	a	fraction	of	the	total	execution	time.	You	should	investigate	what	options	you	have
available	for	your	database	product	for	forcing	recompilation	where	it	is	applicable.	With	some



database	engines	such	as	Oracle,	peeking	into	the	parameters	prior	to	executing	the	cached	plan	is
supported,	which	helps	alleviate	this	particular	problem.

Things	to	Remember
	Whenever	you	read	an	execution	plan,	translate	it	into	physical	actions,	analyze	whether
you	have	indices	that	are	not	being	used,	and	determine	why	they	are	not	being	used.
	Analyze	the	individual	steps	and	consider	whether	they	are	effective.	Note	that	efficiency	is
influenced	by	the	data	distribution.	Consequently,	there	are	no	“bad”	operations.	Rather,
analyze	whether	the	operation	used	is	appropriate	for	the	query	being	used.
	Do	not	fixate	on	one	query	and	add	indices	to	get	a	good	execution	plan.	You	must	consider
the	overall	usage	of	the	database	to	ensure	that	indices	serve	as	many	queries	as	possible.
	Watch	out	for	a	“mouse	and	elephant”	situation,	where	the	data	distribution	is	unequal	and
thus	requires	different	optimizations	for	an	identical	query.	That	is	especially	problematic
when	execution	plans	are	cached	and	reused	(typically	the	case	with	stored	procedures	or
client-side	prepared	statements).



8.	Cartesian	Products

In	Item	22,	“Understand	relational	algebra	and	how	it	is	implemented	in	SQL,”	you	read	about
Cartesian	Products,	which	are	the	results	of	combining	all	rows	in	one	table	or	row	set	with	all
rows	in	a	second	table	or	row	set.	Although	perhaps	not	as	common	as	other	join	types,	the
CROSS	JOIN	(which	is	how	you	create	a	Cartesian	Product	in	SQL)	is	often	a	necessary	input
when	creating	SQL	statements.
In	this	chapter	we	show	you	several	real-world	situations	where	it	would	not	be	possible	to
answer	the	underlying	question	without	the	use	of	a	Cartesian	Product.	Note	that	we	are	not
talking	about	unintentional	Cartesian	Products	that	you	might	produce	by	forgetting	to	include	one
or	more	columns	required	for	a	multiple-column	join.	All	the	problems	we	discuss	use	intentional
Cartesian	Products	and	no	join	criteria.
We	think	that	once	you	see	the	usefulness	of	this	capability,	you	will	see	many	other	opportunities
to	use	it	to	solve	your	problems.

Item	47:	Produce	Combinations	of	Rows	between	Two	Tables	and	Flag	Rows
in	the	Second	That	Indirectly	Relate	to	the	First
Sometimes	you	need	to	generate	a	list	of	every	possible	combination	in	order	to	be	able	to
determine	which	records	have	been	processed	and	which	have	not.
Assume	you	wish	to	see,	for	each	customer,	which	products	that	customer	has	purchased	and
which	he	or	she	has	not	purchased.	A	straightforward	approach	would	be:

1.	Produce	a	list	of	all	possible	combinations	of	customers	and	products.
2.	Produce	a	list	of	all	purchases	each	customer	made.
3.	Use	a	left	join	between	the	list	of	all	possible	combinations	and	the	list	of	actual	purchases
to	allow	you	to	mark	the	actual	purchases.

Simply	having	a	list	of	what	each	customer	has	purchased	is	not	sufficient	to	be	able	to	determine
what	the	customer	has	not	purchased.	You	must	also	have	a	list	of	all	possible	purchases	(i.e.,	the
Cartesian	Product).	When	you	use	a	left	join	between	those	two	result	sets	(with	the	Cartesian
Product	as	the	“left”	table	and	the	actual	purchases	as	the	“right”	table),	you	can	identify	what
was	not	purchased	by	finding	the	null	values	on	the	“right”	side.
You	can	use	a	Cartesian	Product	to	produce	a	list	showing	every	combination	of	Customers
and	Products	using	the	SQL	shown	in	Listing	8.1.

Listing	8.1	Using	a	Cartesian	Product	to	obtain	a	list	of	every	customer	and	every	product

Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
		p.ProductNumber,	p.ProductName,	p.ProductDescription
FROM	Customers	AS	c,	Products	AS	p;

Note



Although	all	DBMSs	support	listing	the	tables	in	a	FROM	clause	with	no	JOIN
clause,	some	will	change	the	FROM	clause	to	FROM	Customer	AS	c	CROSS
JOIN	Products	AS	p.

You	can	produce	a	list	of	what	products	each	customer	has	purchased	by	joining	the	Orders	and
Order_Details	tables,	as	shown	in	Listing	8.2.

Listing	8.2	Determining	all	products	sold

Click	here	to	view	code	image

SELECT	o.OrderNumber,	o.CustomerID,	od.ProductNumber
FROM	Orders	AS	o
		INNER	JOIN	Order_Details	AS	od
				ON	o.OrderNumber	=	od.OrderNumber;

Armed	with	those	two	queries,	you	can	use	a	left	join	to	determine	which	rows	in	the	Cartesian
Product	have	been	purchased	and	which	have	not,	as	shown	in	Listing	8.3.

Listing	8.3	Listing	all	customers	and	all	products,	flagging	products	already	purchased	by	each
customer

Click	here	to	view	code	image

SELECT	CustProd.CustomerID,	CustProd.CustFirstName,
		CustProd.CustLastName,	CustProd.ProductNumber,
		CustProd.ProductName,
		(CASE	WHEN	OrdDet.OrderCount	>	0
				THEN	'You	purchased	this!'
				ELSE	'	'
			END)	AS	ProductOrdered
FROM
(SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
			p.ProductNumber,	p.ProductName,	p.ProductDescription
	FROM	Customers	AS	c,	Products	AS	p)	AS	CustProd
			LEFT	JOIN
					(SELECT	o.CustomerID,	od.ProductNumber,
								COUNT(*)	AS	OrderCount
						FROM	Orders	AS	o
								INNER	JOIN	Order_Details	AS	od
										ON	o.OrderNumber	=	od.OrderNumber
						GROUP	BY	o.CustomerID,	od.ProductNumber)	AS	OrdDet
					ON	CustProd.CustomerID	=	OrdDet.CustomerID
							AND	CustProd.ProductNumber	=	OrdDet.ProductNumber
ORDER	BY	CustProd.CustomerID,	CustProd.ProductName;

Rather	than	using	LEFT	JOIN,	another	approach	is	to	use	IN	to	determine	whether	the	given
customer	purchased	the	given	product,	as	shown	in	Listing	8.4.	Unfortunately,	we	cannot	tell	you
whether	one	approach	is	better	than	the	other,	because	performance	depends	on	the	amount	of
data,	the	indexes,	and	which	DBMS	you	use.

Listing	8.4	Alternative	approach	for	listing	all	customers	and	all	products,	flagging	products
already	purchased	by	each	customer



Click	here	to	view	code	image

SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
		p.ProductNumber,	p.ProductName,
		(CASE	WHEN	c.CustomerID	IN
				(SELECT	Orders.CustomerID
					FROM	Orders
							INNER	JOIN	Order_Details
									ON	Orders.OrderNumber	=	Order_Details.OrderNumber
					WHERE	Order_Details.ProductNumber	=	p.ProductNumber)
					THEN	'You	purchased	this!'
					ELSE	'	'
			END)	AS	ProductOrdered
FROM	Customers	AS	c,	Products	AS	p
ORDER	BY	c.CustomerID,	p.ProductNumber;

The	results	from	either	query	might	look	something	like	Table	8.1	on	the	next	page.

Table	8.1	Partial	results	from	a	list	of	all	customers	and	products,	with	those	purchased	noted

Things	to	Remember
	Use	a	Cartesian	Product	to	produce	every	possible	combination	of	records	between	two



tables.
	Use	INNER	JOIN	to	determine	those	combinations	that	actually	did	occur.
	Consider	using	LEFT	JOIN	to	compare	the	result	of	the	Cartesian	Product	to	the	list	of
combinations	that	actually	occurred.
	You	can	also	use	an	IN	subquery	in	a	CASE	statement	in	the	SELECT	clause	to	produce	the
same	result	as	using	a	Cartesian	Product	and	LEFT	JOIN,	but	the	relative	performance
depends	on	the	amount	of	data,	indexes,	and	the	particular	DBMS	used.

Item	48:	Understand	How	to	Rank	Rows	by	Equal	Quantiles
When	analyzing	and	comparing	results—whether	it	be	product	sales	or	student	grades—it	is	often
useful	to	know	not	just	which	is	the	best	or	worst	but	also	where	a	particular	value	lies	in
comparison	to	others.	To	do	this,	you	need	to	break	the	ranked	rows	into	even	quantiles—for
example,	quartiles	(four	even	groups),	quintiles	(five	even	groups),	or	deciles	(ten	groups).	This
gives	you,	for	example,	not	just	the	best	students	or	the	best-selling	products,	but	also	those	who
rank	in	the	top	10	or	20	or	25%.	In	this	item	we	explore	how	to	do	this	sort	of	ranking	and	rate	the
results	in	20%	(or	quintile)	bands.
For	this	example,	we	use	the	Sales	Orders	sample	database.	Figure	8.1	shows	the	design.

Figure	8.1	Design	of	a	sample	Sales	Orders	database

It	would	be	interesting	to	find	out	how	the	sales	of	products	in	a	particular	category	rank	with
respect	to	one	another.	In	the	sample	database,	the	Accessories	category	has	the	most	products,	so
that	should	produce	more	interesting	results.



We	need	the	sales	by	product	several	times	in	this	query,	so	it	makes	sense	to	use	a	common	table
expression	(CTE)	that	returns	the	total	sales	for	each	product	number	in	the	Accessories	category.
You	can	see	the	SQL	for	the	CTE	in	Listing	8.5.

Listing	8.5	Calculating	total	sales	by	product	for	each	product	in	Accessories

Click	here	to	view	code	image

SELECT	od.ProductNumber,
		SUM(od.QuantityOrdered	*	od.QuotedPrice)	AS	ProductSales
FROM	Order_Details	AS	od
WHERE	od.ProductNumber	IN	(
		SELECT	p.ProductNumber
		FROM	Products	AS	p
				INNER	JOIN	Categories	AS	c
						ON	p.CategoryID	=	c.CategoryID
		WHERE	c.CategoryDescription	=	'Accessories'
		)
GROUP	BY	od.ProductNumber;

Next,	we	need	the	total	count	of	products	so	that	we	can	divide	that	into	fifths	to	determine	where
each	quintile	begins	and	ends.	We	need	that	value	for	each	product	row	to	be	able	to	perform	a
calculation	to	determine	the	quintile.	We	could	put	a	scalar	subquery	in	the	outer	SELECT	clause,
but	we	do	not	really	want	to	display	that	number	on	every	row	in	the	output.	The	solution	is	to	use
CROSS	JOIN	with	a	subquery	so	that	the	value	is	available	on	every	row,	but	we	do	not	have	to
include	it	in	the	final	SELECT	clause.
To	simplify	things,	we	need	a	second	table	subquery	that	returns	the	descriptive	columns	and
calculates	the	“rank”	of	each	product	by	comparing	the	sales	for	the	current	product	with	the	sales
of	all	other	products.	See	Item	38,	“Create	row	numbers	and	rank	a	row	over	other	rows,”	to
recall	how	to	do	that.	Although	you	could	use	a	subquery	and	COUNT	to	produce	the	ranking,	the
RANK()	window	function	is	more	straightforward.
Finally,	we	need	a	complex	CASE	clause	that	compares	the	rank	of	each	product	to	the	place
within	each	quintile	by	multiplying	the	values	0.2,	0.4,	0.6,	and	0.8	(the	boundaries	of	each
quintile)	by	the	total	number	of	products.	The	final	solution	is	in	Listing	8.6.

Listing	8.6	Ranking	Accessories	by	total	sales	and	calculating	the	quintile

Click	here	to	view	code	image

WITH	ProdSale	AS	(
		SELECT	od.ProductNumber,
				SUM(od.QuantityOrdered	*	od.QuotedPrice)	AS	ProductSales
		FROM	Order_Details	AS	od
		WHERE	od.ProductNumber	IN	(
				SELECT	p.ProductNumber
				FROM	Products	AS	p
						INNER	JOIN	Categories	AS	c
								ON	p.CategoryID	=	c.CategoryID
				WHERE	c.CategoryDescription	=	'Accessories'
				)
		GROUP	BY	od.ProductNumber
),



RankedCategories	AS	(
		SELECT	Categories.CategoryDescription,	Products.ProductName,
				ProdSale.ProductSales,
				RANK()	OVER	(
						ORDER	BY	ProdSale.ProductSales	DESC
				)	AS	RankInCategory
		FROM	Categories
				INNER	JOIN	Products
						ON	Categories.CategoryID	=	Products.CategoryID
				INNER	JOIN	ProdSale
						ON	ProdSale.ProductNumber	=	Products.ProductNumber
),
ProdCount	AS	(
		SELECT	COUNT(ProductNumber)	AS	NumProducts
		FROM	ProdSale
)
SELECT	p1.CategoryDescription,	p1.ProductName,
		p1.ProductSales,	p1.RankInCategory,
		CASE
				WHEN	RankInCategory	<=	ROUND(0.2	*	NumProducts,	0)
						THEN	'First'
				WHEN	RankInCategory	<=	ROUND(0.4	*	NumProducts,	0)
						THEN	'Second'
				WHEN	RankInCategory	<=	ROUND(0.6	*	NumProducts,	0)
						THEN	'Third'
				WHEN	RankInCategory	<=	ROUND(0.8	*	NumProducts,	0)
						THEN	'Fourth'
				ELSE	'Fifth'
		END	AS	Quintile
FROM	RankedCategories	AS	p1
		CROSS	JOIN	ProdCount
ORDER	BY	p1.ProductSales	DESC;

Note	that	the	ROUND()	function	is	not	defined	in	the	ISO	SQL	Standard,	but	all	major
implementations	support	it.	You	can	see	the	final	result	in	Table	8.2	on	the	next	page.



Table	8.2	Accessories	ranked	by	sales	with	a	calculated	quintile



If	you	do	not	use	ROUND(),	the	first	quintile	will	have	three	members,	and	all	the	rest	will	have
four.	Using	ROUND()	when	the	total	count	is	not	evenly	divisible	by	five	pushes	the	“odd”
quintile	down	to	the	middle.

Note
If	your	database	system	does	not	support	RANK(),	you	can	generate	a	rank	within
each	category	by	using	a	SELECT	COUNT	subquery.	We	used	this	technique	in	the
Microsoft	Access	version	of	the	Sales	Orders	database	in	the	query	named	Listing	8-
006-RankedCategories,	available	on	the	GitHub	site	at
https://github.com/TexanInParis/Effective-SQL.

You	can	use	the	same	technique	to	divide	any	set	of	ranked	data	into	equal	percentages.	To
calculate	the	multiplier	numbers,	divide	1	by	the	number	of	equal	groups	you	want,	and	then	use	a
multiple	of	that	result	to	split	up	the	groups.	For	example,	if	you	want	to	divide	into	deciles,	1/10
=	0.10,	so	you	would	use	0.10,	0.20,	.	.	.,	0.80,	and	0.90.

Things	to	Remember
	Breaking	a	set	of	quantified	data	into	ranking	partitions	can	be	an	interesting	and	useful	way
to	evaluate	information.
	Use	the	RANK()	window	function	to	easily	create	a	ranking	value.
	Divide	1	by	the	number	of	groups	you	want	to	create	the	count	multiplier	for	each	group.

Item	49:	Know	How	to	Pair	Rows	in	a	Table	with	All	Other	Rows
Finding	all	possible	combinations	of	a	set	of	data	can	often	be	useful.	The	simplest	example	is	to
create	a	list	of	all	combinations	of	all	teams	taken	two	at	a	time—perhaps	to	create	a	competition
schedule	for	a	softball	or	bowling	league.	Let’s	suppose	we	have	a	Teams	table	created	with	the
SQL	in	Listing	8.7.

Listing	8.7	Table	structure	for	a	Teams	table

Click	here	to	view	code	image

CREATE	TABLE	Teams	(
		TeamID	int	NOT	NULL	PRIMARY	KEY,
		TeamName	varchar(50)	NOT	NULL,
		CaptainID	int	NULL
);

To	create	a	schedule	that	shows	each	team	playing	every	other	team,	you	need	to	get	all	the
combinations	(not	the	permutations)	of	teams	taken	two	at	a	time.1	When	you	have	at	least	one
column	that	is	unique,	it	is	a	simple	matter	to	pair	each	team	with	any	other	team	that	has	a	lower
or	higher	unique	ID.	You	can	create	a	Cartesian	Product	of	two	copies	of	the	table	and	apply	a
filter	on	TeamID,	as	shown	in	Listing	8.8.

1.	Combinations	are	the	sets	of	unique	numbers,	regardless	of	position.	For	example,	given	the	set	1,	2,	3,	4,	5,	the	combinations
of	two	at	a	time	are	1-2,	1-3,	1-4,	1-5,	2-3,	2-4,	2-5,	3-4,	3-5,	and	4-5.	Permutations	are	the	sets	of	combinations	and	positions.

https://github.com/TexanInParis/Effective-SQL


The	permutations	of	the	set	1,	2,	3,	4,	5	taken	two	at	a	time	include	the	ten	combinations	and	another	ten	sets	with	the
numbers	reversed.	So,	both	1-2	and	2-1	participate	in	the	permutation,	but	only	1-2	or	2-1	participates	in	the	combination.

Listing	8.8	Fetching	all	combinations	of	teams	taken	two	at	a	time	using	a	Cartesian	Product

Click	here	to	view	code	image

SELECT	Teams1.TeamID	AS	Team1ID,
		Teams1.TeamName	AS	Team1Name,
		Teams2.TeamID	AS	Team2ID,
		Teams2.TeamName	AS	Team2Name
FROM	Teams	AS	Teams1
		CROSS	JOIN	Teams	AS	Teams2
WHERE	Teams2.TeamID	>	Teams1.TeamID
ORDER	BY	Teams1.TeamID,	Teams2.TeamID;

Or	you	can	solve	it	with	a	non-equijoin	as	shown	in	Listing	8.9.	In	SQL	Server,	both	queries	use
the	same	resources,	but	you	might	find	one	to	be	faster	than	the	other	on	another	system.

Listing	8.9	Fetching	all	combinations	of	teams	taken	two	at	a	time	using	a	non-equijoin

Click	here	to	view	code	image

SELECT	Teams1.TeamID	AS	Team1ID,
		Teams1.TeamName	AS	Team1Name,
		Teams2.TeamID	AS	Team2ID,
		Teams2.TeamName	AS	Team2Name
FROM	Teams	AS	Teams1
		INNER	JOIN	Teams	AS	Teams2
				ON	Teams2.TeamID	>	Teams1.TeamID
ORDER	BY	Teams1.TeamID,	Teams2.TeamID;

Note
In	some	DBMSs,	the	optimizer	might	yield	the	same	plan	for	both	Listing	8.8	and
Listing	8.9,	and	the	optimizer	might	also	be	able	to	transform	a	cross	join	into	an
inner	join.	Refer	to	Chapter	7,	“Getting	and	Analyzing	Metadata,”	for	details	on
reading	execution	plans.

If	you	understand	a	bit	of	mathematics,	the	formula	for	calculating	the	number	of	combinations	you
should	get	for	a	set	of	N	items	taken	K	at	a	time	is	as	follows:

If	we	are	pairing	ten	teams,	we	would	expect	to	get

When	you	cancel	8	factorial	(8	*	7	*	6	*	5	*	4	*	3	*	2	*	1)	from	above	and	below	the	dividing
line,	you	end	up	with	10	*	9	divided	by	2,	or	45	rows.	Table	8.3	is	the	result,	and	it	has	exactly
45	rows.



Table	8.3	All	teams	paired	with	each	other



Assuming	these	are	left	and	right	lane	or	home	and	away	team	assignments,	you	can	UNION	the
SQL	with	another	copy	that	uses	Teams2.TeamID	<	Teams1.TeamID	to	extend	the
assignments	to	a	second	round	where	the	team	assignments	are	reversed.	If	you	want	to	create	one
round	where	home	and	away	assignments	are	alternated	so	that	each	team	has	roughly	the	same
number	of	home	and	away	games,	you	can	use	the	SQL	that	uses	window	functions	shown	in
Listing	8.10.	(See	Item	37,	“Know	how	to	use	window	functions,”	for	more	details.)

Listing	8.10	Using	window	functions	to	allocate	home	and	away	games

Click	here	to	view	code	image

WITH	TeamPairs	AS	(
		SELECT
				ROW_NUMBER()	OVER	(
						ORDER	BY	Teams1.TeamID,	Teams2.TeamID
						)	AS	GameSeq,
				Teams1.TeamID	AS	Team1ID,	Teams1.TeamName	AS	Team1Name,
				Teams2.TeamID	AS	Team2ID,	Teams2.TeamName	AS	Team2Name
		FROM	Teams	AS	Teams1
				CROSS	JOIN	Teams	AS	Teams2
		WHERE	Teams2.TeamID	>	Teams1.TeamID
)
SELECT	TeamPairs.GameSeq,
		CASE	ROW_NUMBER()	OVER	(
				PARTITION	BY	TeamPairs.Team1ID
				ORDER	BY	GameSeq
				)	MOD	2
				WHEN	0	THEN
						CASE	RANK()	OVER	(ORDER	BY	TeamPairs.Team1ID)	MOD	3
								WHEN	0	THEN	'Home'	ELSE	'Away'	END
				ELSE
						CASE	RANK()	OVER	(ORDER	BY	TeamPairs.Team1ID)	MOD	3
								WHEN	0	THEN	'Away'	ELSE	'Home'	END
				END	AS	Team1PlayingAt,
		TeamPairs.Team1ID,	TeamPairs.Team1Name,
		TeamPairs.Team2ID,	TeamPairs.Team2Name
FROM	TeamPairs
ORDER	BY	TeamPairs.GameSeq;

Note
The	modulus	operator	in	SQL	Server	and	PostgreSQL	is	%,	not	MOD.	In	DB2	and
Oracle,	use	the	MOD	function.	PostgreSQL	also	supports	the	MOD	function.

The	TeamPairs	CTE	is	our	original	query	with	a	row	number	added	to	each	pair.	In	the	main
query,	we	examine	every	other	row	(MOD	2)	to	decide	whether	to	assign	“home”	or	“away”	to
the	first	team.	Because	there	is	a	bias	toward	assigning	“home”	to	the	first	game	of	every	team,
we	then	look	at	every	third	row	to	make	the	assignments	in	reverse	order.	If	we	do	not	do	that,	we
end	up	with	25	home	games	and	20	away	games.	See	also	Item	42,	“If	possible,	use	common	table
expressions	instead	of	subqueries,”	for	more	information	about	CTEs.
Creating	combinations	of	things	can	be	useful	in	many	other	ways.	Suppose	you	are	the	manager
of	a	grocery	store,	and	you	are	interested	in	which	combinations	of	items	sell	best	together.	For



example,	do	a	lot	of	shoppers	frequently	buy	pretzels	and	potato	chips	with	beer?	When	you	find
popular	combinations	of	three	items,	one	marketing	theory	might	suggest	that	you	place	those	three
items	together	in	the	store	to	make	it	easier	for	shoppers	to	find	them.	Yet	another	theory	might	be
to	separate	those	three	products	as	far	as	possible	from	each	other	so	that	a	shopper	has	to	pass
many	other	tempting	items	to	pick	up	the	three	popular	ones.
Let’s	assume	you	have	a	Products	table	that	has	a	ProductNumber	primary	key	column	and
a	ProductName	column.	You	can	find	all	combinations	of	products	taken	three	at	a	time	using
the	SQL	in	Listing	8.11.

Listing	8.11	Finding	all	combinations	of	products	taken	three	at	a	time

Click	here	to	view	code	image

SELECT	Prod1.ProductNumber	AS	P1Num,
		Prod1.ProductName	AS	P1Name,	Prod2.ProductNumber	AS	P2Num,
		Prod2.ProductName	AS	P2Name,	Prod3.ProductNumber	AS	P3Num,
		Prod3.ProductName	AS	P3Name
FROM	Products	AS	Prod1	CROSS	JOIN	Products	AS	Prod2
		CROSS	JOIN	Products	AS	Prod3
WHERE	Prod1.ProductNumber	<	Prod2.ProductNumber
		AND	Prod2.ProductNumber	<	Prod3.ProductNumber;

Note	that	the	choice	of	>	or	<	as	a	comparison	operator	does	not	matter	as	long	as	you	use	the
same	one	in	all	your	comparisons.	You	might	think	that	<>	would	also	work,	but	that	gets	all	the
permutations	when	all	you	want	are	the	combinations.
Of	course,	the	typical	grocery	store	has	tens	of	thousands	of	products,	so	finding	the	combination
of	all	products	taken	three	at	a	time	could	produce	more	than	200	billion	rows!	A	wise	store
manager	would	perhaps	choose	a	few	related	product	categories	or	products	from	one	vendor.
You	can	use	the	result	to	drive	finding	orders	that	contain	a	particular	combination	of	three
products,	then	count	the	orders	for	each	combination	to	determine	which	occur	most	often.	We
showed	you	ways	to	solve	problems	with	multiple	criteria	like	this	(“Find	the	orders	that	contain
all	three	products”)	in	Item	25,	“Know	techniques	to	solve	multiple-criteria	problems.”

Things	to	Remember
	Finding	all	combinations	of	N	things	taken	K	at	a	time	can	be	useful.
	The	technique	to	find	combinations	when	you	have	a	unique	column	is	quite
straightforward.
	To	increase	the	number	of	items	chosen	per	combination,	simply	add	another	copy	of	the
target	table	to	your	query.
	Be	careful	when	working	with	large	sets	of	data	because	you	could	end	up	with	billions	of
rows.

Item	50:	Understand	How	to	List	Categories	and	the	Count	of	First,	Second,
or	Third	Preferences
When	you	want	to	compare	qualifications	to	a	list	of	attributes,	you	might	not	get	a	perfect	match.



When	you	do	not	get	a	perfect	match,	you	are	probably	interested	in	finding	the	closest	matches,
and	that	is	more	easily	done	if	you	can	rank	the	importance	of	qualifications	with	respect	to
attributes.
One	of	our	sample	databases	handles	scheduling	of	entertainers	with	customers.	In	that	database,
we	list	all	the	styles	of	music	that	each	entertainer	plays.	We	also	have	a	table	that	contains	the
musical	preferences	of	each	customer.	You	can	see	the	design	of	the	database	in	Figure	8.2.

Figure	8.2	Design	of	a	database	to	track	entertainment	bookings

You	can	see	that	the	Musical_Preferences	table	contains	a	column	to	rank	the	customer
preferences	using	a	sequence	number.	In	this	database,	a	1	indicates	the	customer’s	first
preference,	a	2	the	second	preference,	and	so	on.	There	is	also	a	column	in	the
Entertainer_Styles	table	that	lists	for	each	style	that	an	entertainer	can	play	the	relative
strength	of	that	style.	For	example,	customer	Zachary	Johnson	has	specified	a	preference	for
Rhythm	and	Blues,	Jazz,	and	Salsa	in	that	order.	Entertainer	Jazz	Persuasion	says	they	focus	on
Rhythm	and	Blues,	Salsa,	and	Jazz	in	that	order.
First,	let’s	see	if	any	of	the	sets	of	styles	for	any	entertainer	fully	matches	the	preferences	listed
for	each	customer.	We	can	do	that	using	one	of	the	techniques	that	we	showed	you	in	Item	26,
“Divide	your	data	if	you	need	a	perfect	match.”	Listing	8.12	on	the	next	page	shows	how.

Listing	8.12	Finding	out	if	any	entertainers	match	all	customer	preferences

Click	here	to	view	code	image



WITH	CustStyles	AS	(
		SELECT	c.CustomerID,	c.CustFirstName,
				c.CustLastName,	ms.StyleName
		FROM	Customers	AS	c
				INNER	JOIN	Musical_Preferences	AS	mp
						ON	c.CustomerID	=	mp.CustomerID
				INNER	JOIN	Musical_Styles	AS	ms
						ON	mp.StyleID	=	ms.StyleID
),
EntStyles	AS	(
		SELECT	e.EntertainerID,	e.EntStageName,	ms.StyleName
		FROM	Entertainers	AS	e
				INNER	JOIN	Entertainer_Styles	AS	es
						ON	e.EntertainerID	=	es.EntertainerID
				INNER	JOIN	Musical_Styles	AS	ms
						ON	es.StyleID	=	ms.StyleID
)
SELECT	CustStyles.CustomerID,	CustStyles.CustFirstName,
		CustStyles.CustLastName,	EntStyles.EntStageName
FROM	CustStyles
		INNER	JOIN	EntStyles
				ON	CustStyles.StyleName	=	EntStyles.StyleName
GROUP	BY	CustStyles.CustomerID,	CustStyles.CustFirstName,
		CustStyles.CustLastName,	EntStyles.EntStageName
HAVING	COUNT(EntStyles.StyleName)	=	(
		SELECT	COUNT(StyleName)
		FROM	CustStyles	AS	cs1
		WHERE	cs1.CustomerID	=	CustStyles.CustomerID
		)
ORDER	BY	CustStyles.CustomerID;

Because	there	are	multiple	sets	of	requirements	(customer	preferences)	that	potentially	match
multiple	sets	of	attributes	(entertainer	styles),	the	query	in	Listing	8.12	is	a	variation	on	the
second	technique	we	showed	you	in	Item	26.	We	added	a	WHERE	clause	in	the	subquery	that
counts	style	names	so	that	we	only	count	the	styles	for	each	customer.	As	it	turns	out,	there	are
perfect	matches	for	seven	of	the	15	customers	in	the	database,	as	shown	in	Table	8.4.	(Note	that
one	customer	has	two	perfect	matches.)



Table	8.4	List	of	customers	for	whom	entertainers	exist	that	match	all	their	preferences

It	is	actually	a	good	result	to	find	that	many	entertainers	who	match	all	of	a	customer’s
preferences!	But	we	would	like	to	find	the	best	entertainers	for	each	customer.	Let’s	assume	that
the	best	entertainer	for	a	given	customer	is	one	whose	top	two	styles	match	the	top	two
preferences	in	any	order.
To	do	that,	we	need	to	“pivot”	the	top	three	preferences	into	first,	second,	and	third	place	and	do
the	same	for	entertainer	strengths.	Then,	if	the	top	two	match	in	any	order,	we	have	found	our	best
matches.	Listing	8.13	shows	how.

Listing	8.13	Selecting	the	best	matches	by	comparing	the	top	two	preferences

Click	here	to	view	code	image

WITH	CustPreferences	AS	(
		SELECT	c.CustomerID,	c.CustFirstName,	c.CustLastName,
				MAX((CASE	WHEN	mp.PreferenceSeq	=	1
														THEN	mp.StyleID
														ELSE	Null	END))	AS	FirstPreference,
				MAX((CASE	WHEN	mp.PreferenceSeq	=	2
														THEN	mp.StyleID
														ELSE	Null	END))	AS	SecondPreference,
				MAX((CASE	WHEN	mp.PreferenceSeq	=	3
														THEN	mp.StyleID
														ELSE	Null	END))	AS	ThirdPreference
		FROM	Musical_Preferences	AS	mp
				INNER	JOIN	Customers	AS	c
						ON	mp.CustomerID	=	c.CustomerID
		GROUP	BY	c.CustomerID,	c.CustFirstName,	c.CustLastName
),
EntStrengths	AS	(
		SELECT	e.EntertainerID,	e.EntStageName,
				MAX((CASE	WHEN	es.StyleStrength	=	1
														THEN	es.StyleID
														ELSE	Null	END))	AS	FirstStrength,
				MAX((CASE	WHEN	es.StyleStrength	=	2
														THEN	es.StyleID
														ELSE	Null	END))	AS	SecondStrength,
				MAX((CASE	WHEN	es.StyleStrength	=	3
														THEN	es.StyleID
														ELSE	Null	END))	AS	ThirdStrength
		FROM	Entertainer_Styles	AS	es
				INNER	JOIN	Entertainers	AS	e
						ON	es.EntertainerID	=	e.EntertainerID
		GROUP	BY	e.EntertainerID,	e.EntStageName
)
SELECT	CustomerID,	CustFirstName,	CustLastName,
		EntertainerID,	EntStageName
FROM	CustPreferences
		CROSS	JOIN	EntStrengths
WHERE	(
		FirstPreference	=	FirstStrength
				AND	SecondPreference	=	SecondStrength
		)	OR	(
		SecondPreference	=	FirstStrength
				AND	FirstPreference	=	SecondStrength



		)
ORDER	BY	CustomerID;

As	you	can	imagine,	you	can	use	any	combination	of	tests	in	the	WHERE	clause	to	expand	what	is
acceptable.	For	example,	you	could	accept	any	match	where	the	customer’s	first	and	second
preferences	match	any	of	the	entertainer’s	three	strengths.	Table	8.5	shows	the	result.

Table	8.5	Finding	entertainers	whose	first	and	second	strengths	match	the	first	and	second
preferences	of	any	customer

As	you	can	see,	we	have	many	of	the	same	matches	that	the	first	query	picked	out,	but	we	have
added	a	recommendation	for	customer	10009	because	at	least	two	of	the	preferences	and
strengths	match.	However,	dropped	from	this	list	are	customers	10008	(Darren	Davidson)	and
10010	(Zachary	Johnson)	because	even	though	all	three	preferences	match,	they	do	not	match	in
first	and	second	place	in	either	order.
Certainly,	a	Divide	operation	will	find	all	complete	matches,	but	when	you	want	to	find	the	best
partial	matches,	you	have	to	get	a	bit	more	creative.	Finding	matches	on	two	out	of	three	helps
you	decide	what	recommendations	to	make	to	your	marketing	staff.

Things	to	Remember
	A	Divide	operation	finds	all	perfect	matches.
	If	you	are	willing	to	accept	partial	matches,	you	need	to	apply	other	techniques.
	Having	ranking	data	in	your	tables	can	help	you	decide	on	the	best	alternative	matches.



9.	Tally	Tables

In	Chapter	8,	“Cartesian	Products,”	you	read	about	Cartesian	Products	and	how	they	can	provide
necessary	data	for	SQL	statements.
Another	useful	tool	is	the	tally	table,	usually	a	table	with	a	single	column	of	sequential	numbers,
with	values	starting	from	1	(or	0)	to	a	maximum	number	appropriate	for	the	situation.	It	can	also
be	a	single	column	of	sequential	dates	that	cover	a	range	of	interest,	or	something	more	complex
to	aid	in	“pivoting”	a	set	of	summaries.	These	allow	us	to	solve	problems	that	cannot	be	solved
with	Cartesian	Products	because	Cartesian	Products	are	dependent	on	actual	values	in	the
underlying	tables,	whereas	tally	tables	cover	all	possibilities.	In	this	chapter	we	show	you
examples	of	such	problems	and	how	tally	tables	can	help.
As	with	Cartesian	Products,	we	think	you	will	see	many	other	examples	of	where	you	can	use
tally	tables	to	solve	your	problems.

Item	51:	Use	a	Tally	Table	to	Generate	Null	Rows	Based	on	a	Parameter
Sometimes	it	is	useful	to	be	able	to	generate	null	or	blank	rows	in	your	data,	particularly	with
data	that	is	being	fetched	for	a	report.	One	example	is	a	report	that	has	a	header	and	several	detail
rows	per	page,	and	the	bottom	line	of	a	box	drawn	around	the	detail	rows	always	gets	placed
after	the	last	row	in	each	group.	When	there	are	not	enough	detail	lines	in	a	group	(or	at	the	end	of
a	group)	to	completely	fill	a	page,	you	need	blank	rows	of	data	sent	to	the	report	engine	to	push
the	bottom	border	down	to	the	correct	location.
Another,	perhaps	simpler,	example	is	data	being	formatted	to	print	mailing	labels.	The	last	time
you	ran	the	report,	you	used	up	a	few	of	the	labels	at	the	top	of	the	last	page.	Rather	than	throw
away	the	partially	used	page,	it	would	be	nice	to	be	able	to	generate	n	blank	rows	at	the
beginning	of	the	mailing	list	data	to	skip	over	the	labels	already	used	on	the	first	page.
What	you	need	in	order	to	do	either	task	is	a	set	of	integer	numbers	from	1	to	the	maximum
number	of	lines	in	a	report	group	or	the	maximum	number	of	labels	on	a	page.	With	that,	you	can
use	a	parameter	or	calculated	value	to	generate	the	necessary	blank	rows.	In	Item	42,	“If	possible,
use	common	table	expressions	instead	of	subqueries,”	we	showed	you	that	it	is	possible	to
generate	a	list	of	numbers	using	a	recursive	CTE.	Let’s	solve	the	“skip	used	mailing	labels”
problem	using	a	CTE,	as	shown	in	Listing	9.1.	We	assume	for	this	example	that	we	need	to	skip
three	used	labels;	we	will	add	the	parameter	later.

Listing	9.1	Using	a	generated	list	to	skip	blank	labels

Click	here	to	view	code	image

WITH	SeqNumTbl	AS	(
		SELECT	1	AS	SeqNum
		UNION	ALL
		SELECT	SeqNum	+	1
		FROM	SeqNumTbl
		WHERE	SeqNum	<	100
		),
SeqList	AS	(



		SELECT	SeqNum
		FROM	SeqNumTbl
		)
SELECT	'	'	AS	CustName,	'	'	AS	CustStreetAddress,
				'	'	AS	CustCityState,	'	'	AS	CustZipCode
FROM	SeqList
WHERE	SeqNum	<=	3
UNION	ALL
SELECT	CONCAT(c.CustFirstName,	'	',	c.CustLastName)
							AS	CustName,
				c.CustStreetAddress,
				CONCAT(c.CustCity,	',	',	c.CustState,	'	',	c.CustZipCode)
							AS	CustCityState,	c.CustZipCode
FROM	Customers	AS	c
ORDER	BY	CustZipCode;

Note
IBM	DB2,	Microsoft	SQL	Server,	MySQL,	Oracle,	and	PostgreSQL	all	support	the
CONCAT()	function;	however,	DB2	and	Oracle	accept	only	two	arguments,	so	you
must	nest	CONCAT()	functions	to	concatenate	multiple	strings.	The	ISO	Standard
defines	only	the	operator	||	to	perform	concatenation.	DB2,	Oracle,	and
PostgreSQL	accept	the	||	concatenation	operator,	and	MySQL	accepts	it	if	the
server	sql_mode	is	set	to	PIPES_AS_CONCAT.	In	SQL	Server,	you	can	use	+	as
a	concatenation	operator.	Microsoft	Access	does	not	support	the	CONCAT()
function,	but	you	can	concatenate	strings	using	either	&	or	+.
Remember	that	neither	MySQL	as	of	5.7	nor	Microsoft	Access	as	of	2016	supports
CTEs,	including	recursive	CTEs.

That	gives	us	three	blank	rows	followed	by	the	data	we	want	to	print.	Note	that	we	used	UNION
ALL	not	because	some	duplicates	might	be	omitted	(highly	unlikely)	but	because	it	is	more
efficient.	When	you	use	UNION,	your	database	must	do	extra	work	to	check	for	and	eliminate
duplicates.	The	first	eight	rows	of	the	output	look	like	Table	9.1.



Table	9.1	Skipping	used	labels	in	a	mailing	list

Another	way	to	do	this	is	to	use	a	tally	table	to	provide	the	number	sequence.	In	our	sample	Sales
Orders	database,	we	just	happen	to	have	a	handy	table	called	ztblSeqNumbers	that	contains
the	numbers	from	1	to	60.	Listing	9.2	shows	how	to	use	the	tally	table.

Listing	9.2	Using	a	tally	table	to	skip	blank	labels

Click	here	to	view	code	image

SELECT		'	'	AS	CustName,	'	'	AS	CustStreetAddress,
				'	'	AS	CustCityState,	'	'	AS	CustZipCode
FROM	ztblSeqNumbers
WHERE	Sequence	<=	3
UNION	ALL
SELECT	CONCAT(c.CustFirstName,	'	',	c.CustLastName)
							AS	CustName,
				c.CustStreetAddress,
				CONCAT(c.CustCity,	',	',	c.CustState,	'	',	c.CustZipCode)
							AS	CustCityState,	c.CustZipCode
FROM	Customers	AS	c
ORDER	BY	CustZipCode;

In	this	simple	example	using	SQL	Server,	there	is	a	negligible	difference	in	performance	between
the	two	techniques—perhaps	because	there	are	only	28	customers	in	the	sample	Customers
table.	In	some	systems,	a	tally	table	may	be	more	efficient	than	using	the	CTE	because	the
Sequence	column	can	be	indexed	in	the	table.
Looking	at	the	two	solutions	just	presented,	you	will	see	that	the	value	3	was	hard-coded	into	the
SQL.	Because	the	number	of	labels	to	be	skipped	will	vary	over	time,	it	would	obviously	be
more	flexible	to	pass	the	number	of	labels	to	be	skipped	as	a	parameter.	To	be	able	to	do	that,	we
need	to	add	the	SQL	to	a	function	that	names	the	parameter,	applies	the	filter	on	the	sequence
number	using	that	parameter,	and	returns	the	result	as	a	table.	Each	time	you	run	the	report,	you
simply	change	the	parameter	value	in	the	table	name	that	you	use	in	the	SELECT	statement	that	is



the	source	of	the	report.	Listing	9.3	shows	the	SQL	for	the	function	and	the	SELECT	statement
used	to	call	the	function	to	skip	five	rows.

Listing	9.3	Skipping	blank	labels	using	a	function

Click	here	to	view	code	image

CREATE	FUNCTION	MailingLabels	(@skip	AS	int	=	0)
RETURNS	Table
AS	RETURN	(
		SELECT	'	'	AS	CustName,	'	'	AS	CustStreetAddress,
				'	'	AS	CustCityState,	'	'	AS	CustZipCode
		FROM	ztblSeqNumbers
		WHERE	Sequence	<=	@skip
		UNION	ALL
		SELECT
				CONCAT(c.CustFirstName,	'	',	c.CustLastName)	AS	CustName,
				c.CustStreetAddress,
				CONCAT(c.CustCity,	',	',	c.CustState,	'	',	c.CustZipCode)
							AS	CustCityState,	c.CustZipCode
		FROM	Customers	AS	c
);

SELECT	*	FROM	MailingLabels(5)
ORDER	BY	CustZipCode;

Table-Valued	Functions
Functions	can	certainly	be	useful	to	return	a	scalar	value	that	you	can	use	anywhere
you	would	otherwise	use	a	column	name.	When	you	have	a	complex	calculation	that
you	use	in	several	views	or	stored	procedures,	you	can	put	that	calculation	once	in	a
function	and	then	call	the	function	whenever	you	need	the	complex	calculation
performed.
But	functions	that	return	an	entire	table	are	even	more	useful.	When	you	want	to	run	a
query	that	depends	on	a	changing	variable	value	in	a	filter,	a	table-valued	function
lets	you	write	what	is	perhaps	complex	SQL	once	and	use	the	parameter	value	to
return	the	filtered	set	of	data.	You	can	use	a	table-valued	function	anywhere	you
would	otherwise	use	a	table	reference	in	a	FROM	clause.	You	can	think	of	a	table-
valued	function	as	a	“parameterized”	view.	The	parameter	value	can	be	supplied	as
a	constant	or	as	a	value	from	a	column	reference	to	another	table	or	subquery.
From	a	performance	standpoint,	a	table-valued	function	is	likely	to	be	better	than	an
equivalent	SQL	query	using	scalar	functions.	As	discussed	in	Item	12,	“Use	indexes
for	more	than	just	filtering,”	the	database	engine	may	use	different	algorithms	for
joining	the	data	from	different	tables.	An	SQL	query	with	a	scalar	function	is	far
more	likely	to	severely	limit	the	engine’s	choices,	and	for	practical	purposes	the
engine	must	treat	it	as	a	black	box	that	must	be	completely	processed	before	it	can	be
used	further.	That	is	usually	the	logical	consequence	of	needing	to	execute	a	scalar
function	once	(or	more!)	per	row.	A	table-valued	function,	on	the	other	hand,	can	be
transparent,	and	the	engine	is	able	to	see	the	“inside”	of	the	function	and	use	that



information	to	form	a	better	execution	plan.	This	is	what	we	usually	call	“inlining.”
So	an	engine	might	be	able	to	inline	a	table-valued	function,	but	almost	never	a	query
whose	filtering	or	joining	depends	on	a	scalar	function.	If	you	come	from	a
programming	background	where	functions	are	second	nature	to	you,	you	must	shift
your	paradigm	when	writing	SQL	queries	and	think	about	sets,	not	rows.	As	usual,
consult	your	database	documentation	to	determine	cases	when	the	database	can
inline	a	table-valued	function	and	when	it	cannot.

Of	course,	you	need	to	execute	the	CREATE	statement	only	once.	Note	that	we	perform	the	final
sort	in	the	query	that	calls	the	function	because	most	implementations	do	not	allow	ORDER	BY
inside	a	function	that	returns	a	table.	After	your	database	system	saves	the	function,	it	is	a	simple
matter	to	change	the	parameter	value	each	time	you	run	your	mailing	labels	report.

Things	to	Remember
	Generating	blank	rows	can	be	useful,	particularly	for	reports.
	You	can	use	either	a	recursive	CTE	or	a	tally	table	to	help	you	generate	blank	rows.	In
some	cases,	using	the	table	may	be	faster.
	To	make	it	easy	to	supply	a	parameter	value	for	the	number	of	blank	rows,	create	a	function
that	accepts	the	parameter	so	that	you	can	call	it	from	a	SELECT	statement.

Item	52:	Use	a	Tally	Table	and	Window	Functions	for	Sequencing
This	item	deals	with	a	case	where	tally	tables	excel	with	window	functions,	discussed	in	Item	37,
“Know	how	to	use	window	functions,”	to	obtain	results	that	depend	on	adjacent	rows	(e.g.,
numbering,	ranking,	etc.).	This	is	useful	for	generating	records	or	sequencing	when	there	is	no
preexisting	data.	If	your	database	engine	supports	window	functions	(see	Item	37),	this	item	is	for
you.
Suppose	you	are	working	in	a	database	for	a	brokerage	that	sells	and	buys	stocks.	They	are
required	by	their	country’s	laws	to	keep	a	record	of	all	sales.	But	the	complicating	factor	is	that
they	will	buy	stocks	at	one	price	and	then	sell	the	same	stocks	at	a	different	price,	and	they	do	not
necessarily	buy	or	sell	the	same	quantities	of	a	stock	every	time.	In	some	situations,	those
variances	could	be	sorted	out	by	simply	totaling	the	margins.	However,	this	is	not	always
possible,	especially	if	we	need	to	work	with	complex	formulas	or	certain	conditions	where	the
output	is	markedly	influenced	by	what	order	we	use	for	calculating	margin.	How	is	that	relevant
to	our	hypothetical	broker?	Let’s	start	with	this	formula:

gross	margin	=	revenue	of	product	–	cost	of	product

So	what	is	the	cost	of	that	particular	unit	of	stock?	And	for	how	much	was	that	particular	unit	of
stock	actually	sold?	Let’s	look	at	a	broker’s	data	model,	noting	also	the	tally	table	that	is	a	single-
column	table	in	Figure	9.1.



Figure	9.1	Data	model	of	the	broker’s	database,	simplified

The	broker	keeps	records	of	all	the	different	stocks	they	may	buy	or	sell.	The	actual	purchases
and	sales	are	kept	in	a	common	transaction	table,	with	a	transaction	type	to	differentiate	whether
the	transaction	is	a	purchase	or	a	sale	of	that	stock.
Now,	observe	that	we	have	our	usual	columns	for	quantity	and	price.	Let’s	consider	how	our
transaction	table	looks	in	Table	9.2	with	the	assumption	that	we	consider	only	one	stock.

Table	9.2	Content	of	a	broker’s	transaction	table

With	that	in	mind,	here	is	the	pop	question:	What	is	the	gross	margin	of	the	tenth	unit	of	stock?
Because	the	tenth	unit	was	bought	in	the	first	buy	transaction,	at	$27.10,	that	is	the	cost	of	the
product.	But	it	was	not	sold	in	the	first	sale;	only	seven	units	of	stock	were	sold.	It	is	actually	in
the	second	sale	that	the	tenth	unit	was	sold.	So	that	means	it	earned	$30.20.	Therefore,	the	gross
margin	for	that	particular	stock	unit	is	$3.10.	And	here	is	the	important	question:	How	do	we
figure	all	that	with	SQL?	We	do	not	even	have	the	luxury	of	keys	on	which	to	do	joins!
We	cannot	very	well	tell	brokers	to	start	entering	each	single	unit	of	stock	bought	or	sold	as	a
record.	That	is	just	tedious.	And	that	is	where	tally	tables	and	window	functions	(discussed	in
Item	37)	come	to	our	rescue.	The	idea	here	is	that	we	need	to	assign	a	“row”	for	each	single	unit
of	stock	and	assign	a	cost	and	matching	revenue	to	that	row	so	that	we	can	then	calculate	the
margin	for	each	option.	If	you	are	familiar	with	accounting,	you	might	have	heard	of	“First	In,
First	Out”	(FIFO)	accounting,	meaning	that	when	a	product	is	sold,	its	cost	is	assumed	to	be	the
cost	at	which	it	was	first	bought.	So	the	first	and	second	sales	must	use	the	first	buy	transaction’s
price	(the	cost	of	the	product)	with	the	exception	that	the	sixth	unit	of	the	second	sale	actually
comes	from	the	second	buy	transaction.	Therefore,	we	need	to	use	the	tally	table	twice:	once	to
calculate	the	cost	of	the	product	(e.g.,	the	price	of	a	“buy”),	and	again	to	calculate	the	revenue	of



the	same	product	(e.g.,	the	price	of	a	“sell”).
To	get	started,	let’s	look	at	the	complete	query	in	Listing	9.4.

Listing	9.4	Complete	query	for	breaking	out	the	individual	stocks	sold	and	bought

Click	here	to	view	code	image

WITH	Buys	AS	(
		SELECT
				ROW_NUMBER()	OVER	(
						PARTITION	BY	t.StockID
						ORDER	BY	t.TransactionDate,	t.TransactionID,	c.Num
						)	AS	TransactionSeq,
				c.Num	AS	StockSeq,
				t.StockID,
				t.TransactionID,
				t.TransactionDate,
				t.Price	AS	CostOfProduct
		FROM	Tally	AS	c
				INNER	JOIN	Transactions	AS	t
						ON	c.Num	<=	t.Quantity
		WHERE	t.TransactionTypeID	=	1
		),
Sells	AS	(
		SELECT
				ROW_NUMBER()	OVER	(
						PARTITION	BY	t.StockID
						ORDER	BY	t.TransactionDate,	t.TransactionID,	c.Num
						)	AS	TransactionSeq,
				c.Num	AS	StockSeq,
				t.StockID,
				t.TransactionID,
				t.TransactionDate,
				t.Price	AS	RevenueOfProduct
		FROM	Tally	AS	c
				INNER	JOIN	Transactions	AS	t
						ON	c.Num	<=	t.Quantity
		WHERE	t.TransactionTypeID	=	2
		)
		SELECT
				b.StockID,
				b.TransactionSeq,
				b.TransactionID	AS	BuyID,
				s.TransactionID	AS	SellID,
				b.TransactionDate	AS	BuyDate,
				s.TransactionDate	AS	SellDate,
				b.CostOfProduct,
				s.RevenueOfProduct,
				s.RevenueOfProduct	-	b.CostOfProduct	AS	GrossMargin
		FROM	Buys	AS	b
				INNER	JOIN	Sells	AS	s
						ON	b.StockID	=	s.StockID
								AND	b.TransactionSeq	=	s.TransactionSeq
		ORDER	BY	b.TransactionSeq;

Table	9.3	shows	a	selected	listing	of	the	data	returned	by	the	query.



Table	9.3	Data	returned	by	the	query	in	Listing	9.4

As	you	can	see,	we	need	to	perform	three	logical	steps:	break	out	the	“buy”	stocks,	then	do	the
same	for	“sells,”	and	then	finally	match	one	unit’s	cost	to	revenue	based	on	the	specified	order.
Let’s	look	more	closely	at	the	Buys	CTE	in	Listing	9.5	on	the	next	page.

Note
See	also	Item	42,	“If	possible,	use	common	table	expressions	instead	of	subqueries,”
for	more	examples	of	using	CTEs.

Listing	9.5	Buys	CTE

Click	here	to	view	code	image

SELECT
		ROW_NUMBER()	OVER	(
				PARTITION	BY	t.StockID
				ORDER	BY	t.TransactionDate,	t.TransactionID,	c.Num
				)	AS	TransactionSeq,
		...
FROM	Tally	AS	c
		INNER	JOIN	Transactions	AS	t
				ON	c.Num	<=	t.Quantity
WHERE	t.TransactionTypeID	=	1

We	use	the	non-equijoin,	which	you	can	read	about	in	Item	33,	“Find	maximum	or	minimum
values	without	using	GROUP	BY,”	between	the	transaction	table	and	the	tally	table	to	generate	a
single	row	for	each	unit	of	the	quantity	bought.	This	works	brilliantly	for	giving	us	the	correct
sequence	of	individual	stocks,	but	we	also	need	a	global	sequence	across	all	“buys”	so	that	we
can	then	match	them	to	the	corresponding	unit	among	“sells.”	For	that,	we	turn	to	the



ROW_NUMBER()	window	function,	which	you	can	read	more	about	in	Item	38,	“Create	row
numbers	and	rank	a	row	over	other	rows,”	where	we	pass	in	the	transaction	date	and	the	ID	in
addition	to	the	number	from	the	tally	table	to	ensure	unique	and	consistent	sorting.	We	include	the
ID	to	act	as	a	tiebreaker	in	cases	where	we	have	two	“buys”	(or	“sells”)	on	the	same	date.
Though	in	this	book	we	consider	only	one	stock	for	brevity,	note	that	the	window	function	has	a
PARTITION	clause	so	that	it	will	work	across	all	different	stocks	that	the	broker	might	sell,
resetting	the	sequence	for	each	stock	being	considered.
The	Sells	CTE	is	actually	similar,	the	only	differences	being	the	filter	of	2	rather	than	1	to
indicate	that	we	want	only	transactions	that	are	“sells,”	and	we	use	RevenueOfProduct
rather	than	CostOfProduct.
The	final	SELECT	then	joins	the	Buys	and	Sells	CTEs	together	using	the	same	global
sequence	that	we	created	with	the	ROW_NUMBER().	Because	that	sequence	is	based	on	the	same
logic	(sorted	by	transaction	date,	then	ID),	we	can	be	assured	that	the	answer	will	remain
consistent	every	time	we	run	the	query,	and	the	same	individual	unit	of	a	stock	will	get	the	correct
cost	and	revenue	assigned	to	it,	enabling	us	to	calculate	the	gross	margin	for	that	particular	unit	of
stock	in	a	consistent	manner.
You	might	wonder	what	happens	if	the	broker	has	more	“buys”	than	“sells”	or	vice	versa.	In	the
query	from	Listing	9.4,	those	excess	rows	would	be	excluded	because	we	did	an	inner	join.	It
would	depend	on	the	firm’s	accounting—they	might	simply	consider	excess	buys	to	be	inventory
and	thus	of	no	interest	for	the	purpose	of	calculating	the	margins,	or	they	might	mark	them	as
losses	(especially	if	the	product	in	question	is	perishable,	such	as	a	crate	of	fruit	rather	than	a	unit
of	stock).	If	it	is	necessary,	you	could	consider	using	LEFT	JOIN	or	even	FULL	OUTER
JOIN	to	ensure	that	the	excess	buys	are	accounted	for.

Things	to	Remember
	Tally	tables	can	be	used	in	tandem	with	window	functions	to	provide	more	ways	to
sequence	or	otherwise	describe	formulas	that	require	a	window.
	Non-equijoins	with	tally	tables	are	useful	when	you	need	to	create	records	out	of	thin	air.

Item	53:	Generate	Multiple	Rows	Based	on	Range	Values	in	a	Tally	Table
You	learned	in	Item	51,	“Use	a	tally	table	to	generate	null	rows	based	on	a	parameter,”	that	a	tally
table	is	handy	for	generating	multiple	artificial	rows	based	on	a	comparison	to	a	numeric	value.
Let’s	take	that	one	step	further	and	use	one	tally	table	to	select	a	row	count	based	on	a	range	of
values,	and	then	a	second	tally	table	to	generate	a	row	count	based	on	a	value	stored	in	the	first
tally	table.
For	this	item,	we	will	again	use	the	sample	Sales	Orders	database.	You	can	see	the	design	in
Figure	9.2	on	the	next	page;	notice	that	it	includes	the	two	tally	tables	that	we	will	use.



Figure	9.2	The	design	of	the	sample	Sales	Orders	database,	including	tally	tables

Let’s	assume	you	are	a	marketing	manager	for	a	company	that	had	great	sales	volumes	in	the
previous	December.	You	would	like	to	reward	your	best	customers	by	mailing	them	one	or	more
coupons	for	$10	off	(on	a	$100	minimum	purchase)	based	on	how	much	they	spent	in	December
of	2015.	If	they	spent	more	than	$1,000,	you	will	send	them	one	coupon.	If	they	spent	more	than
$2,000,	you	will	send	them	two	coupons.	If	they	spent	more	than	$5,000,	you	will	send	them	four
coupons.	And	so	on	up	to	50	coupons	for	spending	more	than	$50,000.
You	cannot	easily	calculate	the	correct	number	of	coupons	using	a	mathematical	formula	because
the	ranges	and	respective	amounts	do	not	follow	a	linear	algorithm.	But	you	can	build	a	tally	table
to	contain	the	ranges	and	respective	coupon	amounts.	Table	9.4	on	the	next	page	shows	a	sample
table	(ztblPurchaseCoupons)	with	the	values	decided	by	the	manager.



Table	9.4	A	tally	table	to	define	a	coupon	count	based	on	spending	amount

The	second	tally	table,	ztblSeqNumbers,	is	a	simple	table	with	one	column	that	contains
ascending	integer	values	from	1	to	60.
Clearly,	we	need	to	figure	out	the	total	amount	each	customer	spent	in	December	2015,	look	up
that	value	in	the	first	tally	table,	and	then	use	the	NumCoupons	column	value	to	generate
multiple	rows	per	customer.	Let’s	first	calculate	the	purchase	total	by	customer.	Listing	9.6	shows
the	first	CTE	that	you	can	use	in	the	final	query.	(See	Item	42,	“If	possible,	use	common	table
expressions	instead	of	subqueries,”	for	details	about	using	CTEs.)	Notice	that	we	left	a	comma	at
the	end	of	the	listing	because	we	are	going	to	add	a	second	CTE.

Listing	9.6	Calculating	the	total	December	2015	purchase	amount	per	customer

Click	here	to	view	code	image

WITH	CustDecPurch	AS	(
		SELECT	Orders.CustomerID,
				SUM((QuotedPrice)*(QuantityOrdered))	AS	Purchase
		FROM	Orders
				INNER	JOIN	Order_Details
						ON	Orders.OrderNumber	=	Order_Details.OrderNumber
		WHERE	Orders.OrderDate	BETWEEN	'2015-12-01'
						AND	'2015-12-31'
		GROUP	BY	Orders.CustomerID
),	...

Next,	let’s	take	that	total	and	figure	out	the	number	of	coupons.	Listing	9.7	shows	the	second	CTE
we	will	add	that	uses	the	value	from	the	first	CTE	to	look	up	the	correct	number	from	our	tally
table.

Listing	9.7	Using	the	result	from	the	first	CTE	to	find	the	number	of	coupons

Click	here	to	view	code	image

...	Coupons	AS	(
		SELECT	CustDecPurch.CustomerID,
				ztblPurchaseCoupons.NumCoupons
		FROM	CustDecPurch
				CROSS	JOIN	ztblPurchaseCoupons
		WHERE	CustDecPurch.Purchase	BETWEEN
				ztblPurchaseCoupons.LowSpend	AND
				ztblPurchaseCoupons.HighSpend
)	...

Finally,	we	have	identified	the	customers	who	have	earned	coupons	and	the	number	of	$10	off
coupons	they	should	receive.	Listing	9.8	shows	the	final	SQL	in	the	query	to	generate	customer
names	and	addresses	repeated	the	appropriate	number	of	times	based	on	the	coupon	count.

Listing	9.8	Generating	one	line	per	customer	per	coupon

Click	here	to	view	code	image

...



SELECT	c.CustFirstName,	c.CustLastName,
		c.CustStreetAddress,	c.CustCity,	c.CustState,
		c.CustZipCode,	cp.NumCoupons
FROM	Coupons	AS	cp
		INNER	JOIN	Customers	AS	c
				ON	cp.CustomerID	=	c.CustomerID
		CROSS	JOIN	ztblSeqNumbers	AS	z
WHERE	z.Sequence	<=	cp.NumCoupons;

Put	all	three	listings	together	to	build	the	final	query.	The	end	result	is	321	rows—some
customers	will	get	one	coupon	(one	row),	some	will	get	two,	some	will	get	four,	some	will	get
nine,	a	few	will	get	20,	and	two	customers	will	get	the	maximum	of	50	coupons.	The	query	can
then	be	sent	to	a	printing	application	to	print	the	specified	number	of	coupons	for	each	customer.
The	first	several	rows	of	the	result	look	like	Table	9.5.	Note	that	the	repeated	customer	rows
correspond	to	the	count	reported	in	the	NumCoupons	column.

Table	9.5	Partial	results	from	the	query

In	the	end,	we	used	one	tally	table	to	calculate	the	number	of	coupons	a	particular	customer
should	receive,	and	another	tally	table	to	expand	that	number	into	one	row	per	customer	per
coupon.	You	could	use	a	CTE	and	a	complex	CASE	expression	to	generate	the	range	values,
which	might	be	preferable	if	this	needs	to	be	done	only	one	time.	But	if	you	need	to	do	this	again
in	the	future	using	different	ranges,	it	is	much	easier	to	simply	change	the	values	in	the	tally	table
rather	than	fix	the	code	in	your	CTE	and	CASE	expression.

Things	to	Remember



	Use	a	tally	table	to	generate	values	not	otherwise	found	in	your	database.
	When	a	tally	table	contains	a	range	of	values,	you	can	compare	the	ranges	to	live	data	to
generate	a	related	calculated	value.
	You	can	use	a	sequential	tally	table	to	generate	rows	based	on	a	value	from	another	tally
table.

Item	54:	Convert	a	Value	in	One	Table	Based	on	a	Range	of	Values	in	a	Tally
Table
You	learned	in	Chapter	5,	“Aggregation,”	how	to	aggregate	data	for	the	purpose	of	analysis.	One
potential	issue	with	GROUP	BY,	as	with	most	computer	things,	is	that	it	is	very	literal:	values
must	be	the	same	before	they	can	be	aggregated	together.	Sometimes	you	may	wish	to	treat	ranges
of	values	in	the	same	way.	We	explore	how	to	do	that	in	this	item.
Consider	a	Student	Grades	database	with	data	as	shown	in	Table	9.6.	(The	Advanced	SQL
teacher	obviously	believed	in	giving	bonus	marks!)

Table	9.6	Sample	Student	Grades	data



Because	no	two	grades	have	the	same	value,	it	is	difficult	to	create	summaries	of	that	data.	A
query	such	as	that	shown	in	Listing	9.9	would	return	counts	of	1	for	each	combination	of	subject
and	final	grade,	as	shown	in	Table	9.7.

Listing	9.9	Attempt	to	summarize	Student	Grades	data

Click	here	to	view	code	image

WITH	StudentGrades	(Student,	Subject,	FinalGrade)	AS	(
		SELECT	stu.StudentFirstNM	AS	Student,
				sub.SubjectNM	AS	Subject,	ss.FinalGrade
		FROM	StudentSubjects	AS	ss
		INNER	JOIN	Students	AS	stu
				ON	ss.StudentID	=	stu.StudentID
		INNER	JOIN	Subjects	AS	sub
				ON	ss.SubjectID	=	sub.SubjectID
		)
SELECT	Subject,	FinalGrade,	COUNT(*)	AS	NumberOfStudents
FROM	StudentGrades
GROUP	BY	Subject,	FinalGrade
ORDER	BY	Subject,	FinalGrade;



Table	9.7	Results	of	the	summarization	attempt	in	Listing	9.9

As	summaries	go,	that	is	not	particularly	useful.	It	would	help	if	you	could	group	the	grades,	such
as	a	letter	grade	covering	a	range	of	numeric	grades.	Table	9.8	shows	one	possible	tally	table	that
could	be	used	for	that	purpose.

Table	9.8	Tally	table	to	convert	ranges	of	numeric	grades	to	letter	grades

Listing	9.10	shows	how	the	GradeRanges	tally	table	can	be	joined	to	the	StudentGrades
table	to	produce	the	results	shown	in	Table	9.9.

Listing	9.10	Joining	the	GradeRanges	tally	table	to	convert	numeric	grades	to	letter	grades

Click	here	to	view	code	image

WITH	StudentGrades	(Student,	Subject,	FinalGrade)	AS	(
		SELECT	stu.StudentFirstNM	AS	Student,
				sub.SubjectNM	AS	Subject,	ss.FinalGrade
		FROM	StudentSubjects	AS	ss
		INNER	JOIN	Students	AS	stu
				ON	ss.StudentID	=	stu.StudentID
		INNER	JOIN	Subjects	AS	sub
				ON	ss.SubjectID	=	sub.SubjectID
		)
SELECT	sg.Student,	sg.Subject,	sg.FinalGrade,	gr.LetterGrade
FROM	StudentGrades	AS	sg	INNER	JOIN	GradeRanges	AS	gr



		ON	sg.FinalGrade	>=	gr.LowGradePoint
		AND	sg.FinalGrade	<=	gr.HighGradePoint
ORDER	BY	sg.Student,	sg.Subject;

Table	9.9	Sample	Student	Grades	data	with	letter	grades

You	can	now	summarize	the	marks	by	LetterGrade,	as	shown	in	Listing	9.11,	with	the	results
shown	in	Table	9.10	on	the	next	page.

Listing	9.11	Summarizing	Student	Grades	data	by	letter	grade

Click	here	to	view	code	image

WITH	StudentGrades	(Student,	Subject,	FinalGrade)	AS	(
		SELECT	stu.StudentFirstNM	AS	Student,
				sub.SubjectNM	AS	Subject,	ss.FinalGrade
		FROM	StudentSubjects	AS	ss
		INNER	JOIN	Students	AS	stu
				ON	ss.StudentID	=	stu.StudentID
		INNER	JOIN	Subjects	AS	sub
				ON	ss.SubjectID	=	sub.SubjectID
		)



SELECT	ag.Subject,	gr.LetterGrade,	COUNT(*)	AS	NumberOfStudents
FROM	StudentGrades	AS	sg
		INNER	JOIN	GradeRanges	AS	gr
				ON	sg.FinalGrade	>=	gr.LowGradePoint
				AND	sg.FinalGrade	<=	gr.HighGradePoint
GROUP	BY	sg.Subject,	gr.LetterGrade
ORDER	BY	sg.Subject,	gr.LetterGrade;

Table	9.10	The	results	of	summarizing	Student	Grades	data	by	letter	grade

Although	the	small	sample	size	in	the	example	means	there	are	still	many	counts	of	1,	at	least	you
can	see	that	some	aggregation	has	occurred.
There	are	a	few	things	to	keep	in	mind	when	designing	tally	tables	for	conversions	such	as	this.	It
is	important	to	ensure	that	all	possible	ranges	are	covered.	The	last	thing	you	want	to	do	is	lose
data	because	some	values	fall	outside	the	range	of	acceptable	values.	There	are	two	general
approaches	to	handling	that	problem:	(1)	you	can	prohibit	invalid	values	at	entry	time	with	a
CHECK	constraint,	or	(2)	you	can	add	rows	to	the	tally	table	including	the	invalid	value	ranges
and	return	“Invalid	Values.”
Assuming	that	the	intent	is	to	group	data	for	summary	purposes,	you	want	to	ensure	that	your
ranges	are	of	appropriate	sizes.	It	does	not	provide	much	benefit	if	each	range	has	only	a	few
values	in	it.	Depending	on	your	specific	situation,	there	is	no	reason	why	the	size	of	each	range
has	to	be	the	same.



The	type	of	data	being	considered	can	mean	that	you	may	need	to	have	each	low	range	value
equal	to	the	previous	high	range	value,	as	shown	in	Table	9.11.	This	is	especially	common	when
the	value	being	compared	is	subject	to	issues	with	decimal	precision.

Table	9.11	Tally	table	to	convert	continuous	ranges	of	numeric	grades	to	letter	grades

Of	course,	if	you	use	ranges	such	as	those	shown	in	Table	9.11,	you	must	remember	to	change	the
inequalities	being	used	in	your	ON	clauses	from	<=	to	<	(as	shown	in	Listing	9.12)	to	ensure	that
no	value	falls	into	two	groups.

Listing	9.12	Joining	the	GradeRanges	tally	table	to	convert	continuous	numeric	grades	to
letter	grades

Click	here	to	view	code	image

WITH	StudentGrades	(Student,	Subject,	FinalGrade)	AS	(
		SELECT	stu.StudentFirstNM	AS	Student,
				sub.SubjectNM	AS	Subject,	ss.FinalGrade
		FROM	StudentSubjects	AS	ss
		INNER	JOIN	Students	AS	stu
				ON	ss.StudentID	=	stu.StudentID
		INNER	JOIN	Subjects	AS	sub
				ON	ss.SubjectID	=	sub.SubjectID
		)
SELECT	sg.Student,	sg.Subject,	sg.FinalGrade,	gr.LetterGrade,



FROM	StudentGrades	AS	sg
		INNER	JOIN	GradeRanges	AS	gr
				ON	sg.FinalGrade	>=	gr.LowGradePoint
				AND	sg.FinalGrade	<	gr.HighGradePoint
ORDER	BY	sg.Student,	sg.Subject;

Note
It	is	possible	to	construct	conversion	tally	tables	that	define	the	ranges	using	only
one	number.	Rather	than	having	a	low	value	and	a	high	value	for	each	range,	you	can
simply	have	only	one	value	that	represents	either	the	bottom	of	the	range	or	the	top	of
the	range,	with	the	other	limit	being	implied	by	the	value	in	either	the	preceding	row
or	the	following	row	for	each	row.	However,	we	feel	that	specifying	both	the	low
and	high	values	for	each	range	leads	to	less	confusion	and	easier	SQL	statements.

Things	to	Remember
	Ensure	that	your	conversion	tally	table	is	designed	appropriately	for	your	data.
	Ensure	that	the	inequalities	used	in	your	non-equijoins	are	appropriate	for	the	tally	table
being	used.

Item	55:	Use	a	Date	Table	to	Simplify	Date	Calculation
Dates	and	times	rank	high	on	the	list	of	problematic	data	types.	Compared	to	other	data	types,	they
require	several	functions	just	to	do	something	useful,	and	in	some	cases	it	might	even	be
necessary	to	wrap	one	date-based	function	in	yet	another	date-based	function.	Some	people	cheat
and	use	shortcuts,	such	as	performing	arithmetic	on	dates	using	numbers	instead	of	interval	data
types,	which	is	in	fact	illogical.	The	challenge	is	magnified	when	we	consider	that	most	DBMSs
do	not	completely	implement	the	SQL	Standards	with	regard	to	data	types,	functions,	and	allowed
operations	for	dates	and	times.
To	illustrate	the	problem,	consider	a	typical	query	that	might	be	used	for	a	business	report	on
shipping	performance,	shown	in	Listing	9.13.	Note	that	the	query	might	return	zero	rows	due	to
the	fact	that	the	query	only	searches	for	the	last	two	months.

Listing	9.13	Possible	query	with	several	date	functions

Click	here	to	view	code	image

SELECT	DATENAME(weekday,	o.OrderDate)	AS	OrderDateWeekDay,
		o.OrderDate,
		DATENAME(weekday,	o.ShipDate)	AS	ShipDateWeekDay,
		o.ShipDate,
		DATEDIFF(day,	o.OrderDate,	o.ShipDate)	AS	DeliveryLead
FROM	Orders	AS	o
WHERE	o.OrderDate	>=
				DATEADD(month,	-2,
						DATEFROMPARTS(YEAR(GETDATE()),	MONTH(GETDATE()),	1))
		AND	o.OrderDate	<
				DATEFROMPARTS(YEAR(GETDATE()),	MONTH(GETDATE()),	1);



Note
Listing	9.13	uses	several	date	functions	specific	to	SQL	Server,	and	some	are	not
available	prior	to	the	2012	version.	Consult	the	Appendix,	“Date	and	Time	Types,
Operations,	and	Functions,”	for	equivalent	date	functions	for	other	DBMSs.

As	you	can	see,	even	this	small	query	with	fairly	modest	requirements	is	already	loaded	with
several	function	invocations	and	literals.	More	code	means	less	readability.	If	not	for	aliases,	it
would	be	hard	to	see	what	the	query	is	doing.	But	aliases	will	not	help	us	validate	whether	the
logic	is	correct.	After	all,	calling	a	pig	by	another	name	does	not	make	it	less	of	a	pig.
When	a	lot	of	business	decisions	or	the	business	performance	heavily	depends	on	dates	in	a
database,	it	might	be	beneficial	to	adopt	a	different	approach:	create	a	date	table	and	use	it	as
your	reference	table	in	place	of	using	several	date	functions.	Listing	9.14	shows	a	possible
creation	DDL	for	a	date	table.

Listing	9.14	Possible	table	creation	DDL	for	a	date	table

Click	here	to	view	code	image

CREATE	TABLE	DimDate	(
		DateKey	int	NOT	NULL,
		DateValue	date	NOT	NULL	PRIMARY	KEY,
		NextDayValue	date	NOT	NULL,
		YearValue	smallint	NOT	NULL,
		YearQuarter	int	NOT	NULL,
		YearMonth	int	NOT	NULL,
		YearDayOfYear	int	NOT	NULL,
		QuarterValue	tinyint	NOT	NULL,
		MonthValue	tinyint	NOT	NULL,
		DayOfYear	smallint	NOT	NULL,
		DayOfMonth	smallint	NOT	NULL,
		DayOfWeek	tinyint	NOT	NULL,
		YearName	varchar(4)	NOT	NULL,
		YearQuarterName	varchar(7)	NOT	NULL,
		QuarterName	varchar(8)	NOT	NULL,
		MonthName	varchar(3)	NOT	NULL,
		MonthNameLong	varchar(9)	NOT	NULL,
		WeekdayName	varchar(3)	NOT	NULL,
		WeekDayNameLong	varchar(9)	NOT	NULL,
		StartOfYearDate	date	NOT	NULL,
		EndOfYearDate	date	NOT	NULL,
		StartOfQuarterDate	date	NOT	NULL,
		EndOfQuarterDate	date	NOT	NULL,
		StartOfMonthDate	date	NOT	NULL,
		EndOfMonthDate	date	NOT	NULL,
		StartOfWeekStartingSunDate	date	NOT	NULL,
		EndOfWeekStartingSunDate	date	NOT	NULL,
		StartOfWeekStartingMonDate	date	NOT	NULL,
		EndOfWeekStartingMonDate	date	NOT	NULL,
		StartOfWeekStartingTueDate	date	NOT	NULL,
		EndOfWeekStartingTueDate	date	NOT	NULL,
		StartOfWeekStartingWedDate	date	NOT	NULL,
		EndOfWeekStartingWedDate	date	NOT	NULL,
		StartOfWeekStartingThuDate	date	NOT	NULL,
		EndOfWeekStartingThuDate	date	NOT	NULL,



		StartOfWeekStartingFriDate	date	NOT	NULL,
		EndOfWeekStartingFriDate	date	NOT	NULL,
		StartOfWeekStartingSatDate	date	NOT	NULL,
		EndOfWeekStartingSatDate	date	NOT	NULL,
		QuarterSeqNo	int	NOT	NULL,
		MonthSeqNo	int	NOT	NULL,
		WeekStartingSunSeq	int	NOT	NULL,
		WeekStartingMonSeq	int	NOT	NULL,
		WeekStartingTueSeq	int	NOT	NULL,
		WeekStartingWedSeq	int	NOT	NULL,
		WeekStartingThuSeq	int	NOT	NULL,
		WeekStartingFriSeq	int	NOT	NULL,
		WeekStartingSatSeq	int	NOT	NULL,
		JulianDate	int	NOT	NULL,
		ModifiedJulianDate	int	NOT	NULL,
		ISODate	varchar(10)	NOT	NULL,
		ISOYearWeekNo	int	NOT	NULL,
		ISOWeekNo	smallint	NOT	NULL,
		ISODayOfWeek	tinyint	NOT	NULL,
		ISOYearWeekName	varchar(8)	NOT	NULL,
		ISOYearWeekDayOfWeekName	varchar(10)	NOT	NULL);

Instead	of	invoking	different	functions	with	different	literals,	we	create	a	single	table	with	a	large
number	of	columns	used	to	store	precalculated	values	in	the	table.	The	actual	script	to	populate
the	date	table	is	too	long	to	include	in	the	item.	However,	you	can	get	the	script	at	the	GitHub	site:
https://github.com/TexanInParis/Effective-SQL.
Returning	to	the	query	shown	in	Listing	9.13,	we	can	then	modify	it	as	shown	in	Listing	9.15.

Listing	9.15	Modified	query	from	Listing	9.13

Click	here	to	view	code	image

SELECT	od.WeekDayNameLong	AS	OrderDateWeekDay,
		o.OrderDate,
		sd.WeekDayNameLong	AS	ShipDateWeekDay,
		o.ShipDate,
		sd.DateKey	-	od.DateKey	AS	DeliveryLead
FROM	Orders	AS	o
		INNER	JOIN	DimDate	AS	od
				ON	o.OrderDate	=	od.DateValue
		INNER	JOIN	DimDate	AS	sd
				ON	o.ShipDate	=	sd.DateValue
		INNER	JOIN	DimDate	AS	td
				ON	td.DateValue	=	CAST(GETDATE()	AS	date)
WHERE	od.MonthSeqNo	=	(td.MonthSeqNo	-	1);

Instead	of	several	functions	and	complex	predicates,	we	now	have	simple	joins	and	simple
arithmetic.	Pay	attention	to	the	fact	that	we	join	the	DimDate	table	three	times,	each	time	to
different	date	columns.	More	descriptive	aliases	could	make	it	clearer	what
WeekdayNameLong	we	are	going	to	get.
Note	that	because	the	DimDate	table	already	precalculates	the	sequential	numbering,	it	is	now
possible	to	do	simple	arithmetic	that	normally	would	be	dangerous	to	do.	Consider	the	sampling
of	the	DimDate	table	in	Table	9.12.

https://github.com/TexanInParis/Effective-SQL


Table	9.12	Sampled	data	from	the	DimDate	table

As	you	can	see,	we	have	our	typical	1	to	12	for	the	MonthValue	field,	and	we	also	have
MonthSeqNo,	which	increases	continuously	for	each	month.	By	using	the	***SeqNo	fields,	it
becomes	easy	to	perform	arithmetic	on	different	parts	of	the	dates	without	having	to	invoke	a
function.	More	importantly,	those	columns	can	be	indexed,	which	enables	you	to	create	sargable
queries	more	easily.
In	Listing	9.13	we	had	to	use	two	predicates	to	correctly	filter	dates,	as	discussed	in	Item	27,
“Know	how	to	correctly	filter	a	range	of	dates	on	a	column	containing	both	date	and	time,”	with
several	function	invocations.	All	of	that	was	necessary	to	create	a	sargable	query	that	could
locate	an	order	within	the	last	month.	Things	can	get	much	worse	when	we	start	to	do	week
calculations,	especially	when	we	incorporate	business	calendar	items	such	as	workdays	or	fiscal
years.
It	is	important	to	note	that	the	date	table	can	be	extended	to	support	the	workdays	and	other
business-specific	domains	for	which	there	are	no	easy	algorithms	to	figure	out	what’s	what.	You
could	go	to	the	trouble	of	calculating	all	the	logic	for	the	next	five	or	ten	years	or	even	more.	The
extra	work	up	front	can	mean	that	date-heavy	queries	become	much	simpler.
However,	be	aware	that	you	are	also	likely	trading	CPU	usage	for	disk	I/O.	The	date	table	is	now
stored	on	disk,	whereas	the	date	functions	are	calculated	in	memory.	Even	if	the	date	table	is
cached	in	memory,	you	still	have	to	consider	that	a	table	requires	more	processing	than	a	simple
inline	function	does.	In	fact,	the	query	from	Listing	9.15	will	perform	more	slowly	than	the	one
from	Listing	9.13	because	of	all	the	extra	reads	being	performed	on	the	DimDate	table.
However,	the	date	table	should	win	out	in	queries	where	several	dates	from	different	sources
must	be	read,	and	calculations	depend	on	those.
Another	thing	you	should	remember	is	that	because	the	DimDate	table	will	not	change	and	will



be	added	to	only	periodically,	you	can	create	several	indices	on	the	table,	just	as	though	you	were
indexing	a	dimension	table	in	a	data	warehouse.	That	then	gives	the	database	engine	the	ability	to
pick	an	index	and	read	from	it	instead	of	from	the	entire	table,	which	should	reduce	the	I/O.	When
explicitly	loading	a	table	into	memory	is	an	option,	you	can	choose	that	option	so	that	it	loads	and
resides	in	memory,	thus	eliminating	any	disk	access	required	to	read	from	the	data.	Not	all	DBMS
products	give	you	the	ability	to	do	this,	but	when	it	is	available,	it	can	make	the	date	table	even
faster	because	the	optimizer	is	able	to	assume	that	the	table	will	always	be	available	in	memory.

Optimizing	Queries	with	Date	Tables
Applying	the	concepts	that	you	learned	in	Item	11,	“Carefully	consider	creation	of
indexes	to	minimize	index	and	data	scanning,”	Item	12,	“Use	indexes	for	more	than
just	filtering,”	and	Item	46,	“Understand	how	the	execution	plan	works,”	you	should
have	enough	knowledge	to	analyze	how	best	to	use	your	date	table.	Continuing	with
the	query	from	Listing	9.15,	if	we	did	not	add	any	other	indices	beyond	the	primary
key,	the	execution	plan	for	the	query	would	likely	be	suboptimal	because	there	are
several	details	that	the	query	needs	to	extract	in	order	to	make	the	determination.
For	one	thing,	we	are	looking	up	the	WeekDayNameLong	column	in	the	DimDate
table	for	the	OrderDate	and	ShipDate	columns	from	the	Orders	table.	So	we
could	create	an	index	to	quickly	extract	the	weekday’s	name	using	dates	with	Listing
9.16.

Listing	9.16	First	try	to	index	the	DimDate	table

Click	here	to	view	code	image

CREATE	INDEX	DimDate_WeekDayLong
ON	DimDate	(DateValue,	WeekdayNameLong);

However,	that	is	not	the	only	thing	we	do	with	the	DimDate	table	in	that	query.	For
one	thing,	we	use	the	MonthSeqNo;	we	compare	the	td.MonthSeqNo	with	the
od.MonthSeqNo.	So	let’s	make	sure	we	include	this	as	shown	in	Listing	9.17.

Listing	9.17	Second	try	to	index	the	DimDate	table

Click	here	to	view	code	image

CREATE	INDEX	DimDate_WeekDayLong
ON	DimDate	(DateValue,	WeekdayNameLong,	MonthSeqNo);

Now	this	covers	all	columns	that	we	used	for	the	query	in	Listing	9.15.	However,
just	having	all	columns	covered	in	an	index	is	not	the	end	of	the	story.	For	one	thing,
the	index	is	sorted	on	the	DateValue	column,	and	we	cannot	directly	access	the
MonthSeqNo	column	even	though	it	is	used	in	the	WHERE	clause	of	the	query.	Let’s
create	an	index	that	sorts	on	MonthSeqNo	first	in	Listing	9.18	on	the	next	page.

Listing	9.18	Indexing	by	MonthSeqNo	in	the	DimDate	table



Click	here	to	view	code	image

CREATE	INDEX	DimDate_MonthSeqNo
ON	DimDate	(MonthSeqNo,	DateValue,	WeekdayNameLong);

If	you	have	been	checking	the	execution	plans	between	tries,	you	should	have	seen
the	plans	getting	better	and	better,	replacing	hash	joins	with	nested	loops,	and	scans
with	seeks.	However,	DimDate	is	only	one	part	of	the	equation.	We	also	have	the
Orders	table.	We	are	looking	up	both	the	OrderDate	and	ShipDate	columns,
and	we	are	filtering	on	the	OrderDate	indirectly	via	the	od.MonthSeqNo	in	the
WHERE	clause.	So,	we	should	have	an	index	that	gives	us	both	date	columns,	sorting
by	OrderDate	as	shown	in	Listing	9.19.

Listing	9.19	Indexing	on	the	Orders	table’s	dates

Click	here	to	view	code	image

CREATE	INDEX	Orders_OrderDate_ShipDate
ON	Orders	(OrderDate,	ShipDate);

At	this	point,	the	query	should	be	quite	optimized,	being	able	to	use	much	smaller
indices	throughout	its	execution	plan	to	give	the	answer	as	quickly	as	possible	for
this	particular	query.	On	some	DBMSs,	using	a	filtered	index	might	go	even	further.
It	pays	to	experiment.
It	is	unlikely	that	this	will	be	the	only	query	using	the	DimDate	table,	but	because
the	content	within	DimDate	will	not	be	updated	frequently,	you	can	create	as	many
indices	as	you	need	to	provide	the	database	engine	with	as	many	choices	as	possible
to	quickly	satisfy	requests	by	using	index	access,	without	actually	touching	the	data
pages.	This	means	faster	I/O,	whether	it	is	on	a	spinning	platter	or	in	RAM	chips.

Things	to	Remember
	For	applications	that	are	heavy	on	dates	and	date-based	calculations,	a	date	table	may
simplify	the	logic	significantly.
	The	date	table	can	be	extended	to	include	application-specific	domains	such	as	working
days,	holidays,	or	fiscal	years.
	Because	the	date	table	is	basically	a	dimension	table,	it	can	be	indexed	heavily,	even	for	an
online	transaction	processing	(OLTP)	database.	If	possible,	storing	the	table	explicitly	in
memory	can	avoid	the	disk	access	penalty	and	help	improve	the	optimizer’s	estimates.

Item	56:	Create	an	Appointment	Calendar	Table	with	All	Dates	Enumerated
in	a	Range
You	saw	the	concept	of	a	date	table	in	Item	55,	“Use	a	date	table	to	simplify	date	calculation,”
and	you	saw	how	to	use	a	left	join	to	produce	more	comprehensive	lists	in	Item	47,	“Produce
combinations	of	rows	between	two	tables	and	flag	rows	in	the	second	that	indirectly	relate	to	the
first.”	You	can	use	the	same	approach	to	produce	listings	of	appointments	(or	any	other	events	you



want	to	display	on	a	calendar).
Consider	the	Appointments	table	shown	in	Listing	9.20.

Listing	9.20	Table	creation	DDL	for	an	Appointments	table

Click	here	to	view	code	image

CREATE	TABLE	Appointments	(
		AppointmentID	int	IDENTITY	(1,	1)	PRIMARY	KEY,
		ApptStartDate	date	NOT	NULL,
		ApptStartTime	time	NOT	NULL,
		ApptEndDate	date	NOT	NULL,
		ApptEndTime	time	NOT	NULL,
		ApptDescription	varchar(50)	NULL
		);

Note
Not	all	DBMSs	support	the	time	data	type.	See	the	Appendix,	“Date	and	Time
Types,	Operations,	and	Functions,”	for	details.
Storing	dates	as	integer	values	(in	yyyymmdd	format)	might	lead	to	more	efficient
queries.	However,	we	chose	not	to	add	that	complication	to	this	example.

Although	it	is	true	that	there	are	both	date	and	time	components	associated	with	the	start	and	end
of	each	appointment,	and	thus	the	DateTime	or	Timestamp	data	type	might	seem	more
appropriate,	we	suggest	storing	the	values	in	separate	date	and	time	fields	to	make	it	easier	to
write	sargable	queries.	(See	Item	28,	“Write	sargable	queries	to	ensure	that	the	engine	will	use
indexes,”	for	an	explanation.)

Note
Some	DBMSs	now	provide	temporal	support	in	accordance	with	the	SQL:2011
Standard.	Consider	using	temporal	support	where	available.

For	the	purpose	of	this	item,	all	that	is	required	in	the	way	of	a	date	table	is	what	is	shown	in
Listing	9.21	on	the	next	page,	with	one	row	for	each	day.	Of	course,	if	you	have	a	more	complete
date	table,	having	additional	columns	is	not	an	issue.

Listing	9.21	Table	creation	DDL	for	a	date	table

CREATE	TABLE	DimDate	(
		DateKey	int	PRIMARY	KEY,
		FullDate	date	NOT	NULL
		);
CREATE	INDEX	iFullDate
		ON	DimDate	(FullDate);

Note



See	Item	55	for	a	discussion	of	how	to	create	and	populate	a	date	table.	Because
date	tables	are	often	used	in	information	warehouses,	the	primary	key	is	usually	not	a
date	field.

You	can	now	create	a	query,	shown	in	Listing	9.22,	that	will	show	every	day	in	the	date	table	and
what	appointments	you	have.	(Note	that	the	query	will	result	in	more	rows	than	are	in	the	date
table,	unless	you	have	the	unusual	situation	where	you	never	have	more	than	one	appointment	on	a
given	day!)

Listing	9.22	SQL	statement	to	return	calendar	details

Click	here	to	view	code	image

SELECT	d.FullDate,
		a.ApptDescription,
		a.ApptStartDate	+	a.ApptStartTime	AS	ApptStart,
		a.ApptEndDate	+	a.ApptEndTime	AS	ApptEnd
FROM	DimDate	AS	d
		LEFT	JOIN	Appointments	AS	a
				ON	d.FullDate	=	a.ApptStartDate
ORDER	BY	d.FullDate;

Note
Not	all	DBMSs	allow	you	to	add	dates	and	times	as	in	Listing	9.22.	See	the
Appendix,	“Date	and	Time	Types,	Operations,	and	Functions,”	for	alternatives	for
your	DBMS.

Should	you	wish	to	see	appointments	for	only	a	specific	time	period,	remember	that,	as	was
mentioned	in	Item	35,	“Include	zero-value	rows	when	testing	for	HAVING	COUNT(x)	<	some
number,”	the	WHERE	clause	should	refer	to	columns	in	DimDate,	not	columns	in
Appointments,	because	the	dates	may	not	exist	in	Appointments.
If	you	run	the	query	in	Listing	9.22	against	the	sample	data	shown	in	Table	9.13,	you	will	get	the
results	shown	in	Table	9.14.



Table	9.13	Sample	data	for	the	Appointments	table

Table	9.14	Results	of	running	Listing	9.22

Things	to	Remember
	Ensure	that	your	date	table	has	the	appropriate	indexing.
	Learn	the	appropriate	date	and	time	handling	for	your	DBMS	and	design	to	accommodate	it.
	Ensure	that	your	WHERE	clause	tests	values	from	the	appropriate	tables.

Item	57:	Pivot	Data	Using	a	Tally	Table



To	create	output	information	to	use	in	a	report,	it	is	often	useful	to	“pivot”	the	data	to	get	a
denormalized	result	that	looks	more	like	a	spreadsheet.	You	typically	want	to	do	that	with	a	query
that	outputs	a	SUM()	or	a	COUNT()	that	is	grouped	on	two	column	values—for	example,	count
of	orders	by	sales	rep	and	month,	or	sum	of	contracts	signed	by	agent	and	by	month.	By	“pivot,”
we	mean	use	the	values	in	one	of	the	columns	as	column	headings.	The	result	places	the	aggregate
value	at	the	intersection	of	the	remaining	grouped	columns	and	the	values	in	the	grouped	column
that	you	pivoted.
For	the	examples	in	this	item,	let’s	use	the	sample	Entertainment	Agency	database	that	you	can
find	on	GitHub	at	https://github.com/TexanInParis/Effective-SQL.	The	database	design	(including
the	tally	table	we	will	use)	looks	like	Figure	9.3.

Figure	9.3	Design	of	the	sample	Entertainment	Agency	database

Let’s	assume	that	your	marketing	manager	has	asked	for	a	report	that	shows	the	total	value	of
entertainment	contracts	booked	by	each	agent	per	month	in	2015.	Your	first	effort	might	look	like
the	SQL	shown	in	Listing	9.23.

Listing	9.23	Calculating	contract	totals	by	agent	and	month

Click	here	to	view	code	image

SELECT	a.AgtFirstName,	a.AgtLastName,
		MONTH(e.StartDate)	AS	ContractMonth,
		SUM(e.ContractPrice)	AS	TotalContractValue
FROM	Agents	AS	a

https://github.com/TexanInParis/Effective-SQL


		INNER	JOIN	Engagements	AS	e
				ON	a.AgentID	=	e.AgentID
WHERE	YEAR(e.StartDate)	=	2015
GROUP	BY	a.AgtFirstName,	a.AgtLastName,	MONTH(e.StartDate);

In	our	sample	database,	the	SQL	in	this	listing	returns	25	rows.	You	can	see	the	first	several	rows
in	Table	9.15.

Table	9.15	Generating	contract	value	totals	by	month	in	2015

That	gets	the	data	requested,	but	the	manager	takes	one	look	at	the	output	and	says,	“Well,	I	know
that’s	what	I	asked	for,	but	I	really	want	to	see	the	data	by	fiscal	quarter.	And	I	want	the	quarters
across	the	top,	the	agents	down	the	side,	and	the	contract	values	by	agent	and	quarter	in	the
intersection.	That	will	let	me	see	the	performance	of	each	agent	from	quarter	to	quarter	and
compare	the	performance	of	the	various	agents	in	a	given	quarter.	Oh,	and	remember	that	our	first
quarter	begins	on	May	1.	And	I	also	want	to	see	all	agents	whether	they’ve	booked	anything	or
not.”
You	knew	this	was	coming,	but	at	least	it	now	appears	that	you	have	all	the	requirements!	Wanting
to	see	all	agents	regardless	of	activity	adds	an	interesting	twist,	but	you	are	sure	you	can	handle	it.
(See	also	Item	29,	“Correctly	filter	the	‘right’	side	of	a	‘left’	join,”	for	more	details.)
Sadly,	there	is	nothing	in	the	current	ISO	SQL	Standard	that	will	let	you	do	this	easily.	Various
database	systems	have	implemented	custom	solutions.	Some	versions	of	IBM	DB2	use	DECODE,
Microsoft	SQL	Server	uses	PIVOT,	Microsoft	Access	uses	TRANSFORM,	Oracle	uses	PIVOT
and	DECODE,	and	PostgreSQL	uses	CROSSTAB	(which	requires	installing	an	extension
“tablefunc”).
If	the	requirement	remained	total	by	month,	you	could	solve	the	problem	without	a	tally	table
using	standard	SQL.	Your	solution	might	look	something	like	Listing	9.24.

Listing	9.24	Calculating	and	pivoting	contract	totals	by	month	using	standard	SQL

Click	here	to	view	code	image

SELECT	a.AgtFirstName,	a.AgtLastName,



		YEAR(e.StartDate)	AS	ContractYear,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	1
								THEN	e.ContractPrice
						END)	AS	January,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	2
								THEN	e.ContractPrice
						END)	AS	February,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	3
								THEN	e.ContractPrice
						END)	AS	March,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	4
								THEN	e.ContractPrice
						END)	AS	April,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	5
								THEN	e.ContractPrice
						END)	AS	May,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	6
								THEN	e.ContractPrice
						END)	AS	June,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	7
								THEN	e.ContractPrice
						END)	AS	July,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	8
								THEN	e.ContractPrice
						END)	AS	August,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	9
								THEN	e.ContractPrice
						END)	AS	September,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	10
								THEN	e.ContractPrice
						END)	AS	October,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	11
								THEN	e.ContractPrice
						END)	AS	November,
		SUM(CASE	WHEN	MONTH(e.StartDate)	=	12
								THEN	e.ContractPrice
						END)	AS	December
FROM	Agents	AS	a
		LEFT	JOIN	(
				SELECT	en.AgentID,	en.StartDate,	en.ContractPrice
				FROM	Engagements	AS	en
				WHERE	en.StartDate	>=	'2015-01-01'
						AND	en.StartDate	<	'2016-01-01'
				)	AS	e
				ON	a.AgentID	=	e.AgentID
GROUP	BY	AgtFirstName,	AgtLastName,	YEAR(e.StartDate);

Of	course,	you	could	make	this	completely	flexible	by	defining	this	as	a	function	that	returns	the
result	as	a	table	and	that	accepts	the	year	you	want	as	a	parameter.	But	now	the	requirement	is	to
arrange	the	data	by	fiscal	quarter,	and	the	first	quarter	starts	on	an	odd	date,	so	you	cannot	use	any
built-in	functions	to	find	out	the	quarter	number.	You	could	add	more	complex	WHEN	clauses	that
test	for	specific	quarter	start	and	end	dates,	but	that	makes	the	query	even	more	complex	and
dependent	on	the	specific	dates	you	would	have	to	code.	To	run	the	query	for	another	year,	you
would	probably	have	to	modify	it,	which	could	introduce	errors.
A	simpler	solution	would	be	to	use	a	tally	table	that	predefines	the	quarters	and	provides	constant
values	0	or	1	for	each	quarter	column	that	you	can	use	instead	of	a	complex	CASE	clause	to



calculate	the	sums	into	the	correct	boxes.	The	tally	table	(ztblQuarters)	looks	like	Table
9.16.

Table	9.16	Tally	table	to	enable	a	pivot	on	variable	quarter	dates

In	the	final	query,	we	will	use	the	tally	table	in	a	Cartesian	Product	with	the	query	that	joins
Agents	and	Engagements	and	filter	the	results	on	the	QuarterStart	and	QuarterEnd
dates.	To	make	it	really	flexible,	you	could	use	a	parameter	to	filter	the	YearNumber	column.
When	you	need	to	run	the	report	for	other	years,	simply	add	rows	to	the	tally	table.	Listing	9.25
shows	the	solution.

Listing	9.25	Calculating	contract	totals	by	agent	by	fiscal	quarter	for	2015

Click	here	to	view	code	image

SELECT	ae.AgtFirstName,	ae.AgtLastName,	z.YearNumber,
		SUM(ae.ContractPrice	*	z.Qtr_1st)	AS	First_Quarter,
		SUM(ae.ContractPrice	*	z.Qtr_2nd)	AS	Second_Quarter,
		SUM(ae.ContractPrice	*	z.Qtr_3rd)	AS	Third_Quarter,
		SUM(ae.ContractPrice	*	z.Qtr_4th)	AS	Fourth_Quarter
FROM	ztblQuarters	AS	z
		CROSS	JOIN	(
				SELECT	a.AgtFirstName,	a.AgtLastName,
						e.StartDate,	e.ContractPrice
				FROM	Agents	AS	a
				LEFT	JOIN	Engagements	AS	e
						ON	a.AgentID	=	e.AgentID
				)	AS	ae
WHERE	(ae.StartDate	BETWEEN	z.QuarterStart	AND	z.QuarterEnd)
			OR	(ae.StartDate	IS	NULL	AND	z.YearNumber	=	2015)
GROUP	BY	AgtFirstName,	AgtLastName,	YearNumber;

Note	that	the	query	uses	the	1	and	0	values	in	the	tally	table	multiplied	by	the	value	being	summed
to	put	the	values	in	the	correct	column.	The	result	(using	our	sample	database	that	does	not	have	a
lot	of	data)	looks	like	Table	9.17.



Table	9.17	Contract	totals	by	agent	and	fiscal	quarter	for	2015

We	know	that	we	did	the	left	join	from	Agents	to	Engagements	correctly	because	the	one
agent	who	has	never	booked	anything	shows	up	with	empty	totals.	As	you	can	imagine,	it	is	a
simple	matter	to	add	a	parameter	to	allow	the	user	to	specify	the	year	of	interest.
It	is	not	always	the	best	idea	to	use	a	tally	table	to	do	a	pivot	when	other	alternatives	are
available.	But	when	you	have	several	variables	to	use	as	filters	for	data	that	you	need	to	pivot,	a
tally	table	can	be	a	good	choice	because	you	need	only	add	more	rows	to	the	tally	table	to	have
the	query	work	for	other	values.

Things	to	Remember
	When	you	need	to	“pivot”	data,	your	database	system	may	have	a	custom	syntax	solution.
	If	you	want	to	use	only	standard	SQL,	you	can	pivot	data	using	a	CASE	expression	to
provide	the	value	from	each	row	within	your	aggregate	function.
	When	the	values	that	determine	the	column	ranges	for	your	pivot	are	variable,	it	may	be
wise	to	use	a	tally	table	to	simplify	your	SQL.



10.	Modeling	Hierarchical	Data

You	already	know	that	the	relational	model	is	not	quite	hierarchical,	which	is	generally	a	good
thing	when	we	need	to	describe	more	complex	relationships	between	different	entities.
Nonetheless,	it	is	not	uncommon	to	run	into	requirements	where	you	need	to	maintain	hierarchical
data	in	your	relational	database.	This	also	happens	to	be	one	of	SQL’s	weaker	areas.
Whenever	you	have	requirements	for	modeling	hierarchical	data	with	your	SQL	database,	you
must	make	a	trade-off	between	data	normalization,	and	ease	of	querying	and	maintenance	of
metadata.	There	are	four	different	models	that	you	can	use,	each	represented	as	an	item	within	the
chapter.	Each	model	will	work	optimally	depending	on	your	answers	to	the	following	questions:

1.	How	much	work	do	you	want	to	invest	in	storing	and	maintaining	the	required	metadata?
Note	that	the	metadata	itself	might	not	be	normalized.

2.	How	efficient	and	fast	should	the	queries	on	the	hierarchy	be?
3.	Will	queries	on	the	tree	search	in	only	a	certain	direction?

In	this	chapter’s	examples	we	use	an	employee	organization	chart,	as	shown	in	Figure	10.1.

Figure	10.1	Organization	chart	used	throughout	Chapter	10

However,	no	matter	what	you	ultimately	choose,	we	encourage	you	to	always	include	the
adjacency	list	model	in	your	database,	which	brings	us	to	the	first	item	of	the	chapter.
Note	that	certain	vendors	offer	extensions	to	their	products	that	make	it	easier	to	model	hierarchy,
such	as	Oracle’s	CONNECT	BY	clause	and	Microsoft	SQL	Server’s	HierarchyId	data	type,
but	the	chapter	focuses	on	solutions	that	work	with	standard	SQL.

Item	58:	Use	an	Adjacency	List	Model	as	the	Starting	Point
You	likely	have	already	seen	an	adjacency	list	model,	even	though	you	may	not	have	heard	the
term	before.	All	employees	have	supervisors.	But	supervisors	themselves	are	actually	employees,
and	they	may	have	their	own	supervisors.	So	it	is	likely	inappropriate	to	create	a	table	named
Employees	and	another	named	Supervisors—why	should	we	have	to	shuttle	records
between	two	tables	as	people	change	position?	Instead,	what	we	would	do	is	create	a	column	on
the	table	with	a	foreign	key	constraint	that	self-references	its	primary	key,	demonstrated	in	Figure
10.2.



Figure	10.2	Self-referencing	the	primary	key

As	you	can	see,	we	can	model	unlimited	depths	of	hierarchy	in	a	single	table	by	creating	a	foreign
key	that	refers	to	the	same	table’s	primary	key.	(In	this	case,	SupervisorID	references
EmployeeID.)	We	can	see	that	Lee	Devi	reports	to	Tom	LaPlante	because	Lee’s
SupervisorID	is	2,	which	is	Tom’s	EmployeeID.	In	turn,	Tom	reports	to	Amy	Kok,	who	is
at	the	top	level	of	the	hierarchical	chart	because	she	has	NULL	for	SupervisorID,	indicating
that	she	reports	to	nobody	else.	The	statement	to	create	this	table	is	given	in	Listing	10.1.

Listing	10.1	Table	creation	statement	with	a	self-referencing	foreign	key

Click	here	to	view	code	image

CREATE	TABLE	Employees	(
		EmployeeID	int	PRIMARY	KEY,
		EmpName	varchar(255)	NOT	NULL,
		EmpPosition	varchar(255)	NOT	NULL,
		SupervisorID	int	NULL
);

ALTER	TABLE	Employees
		ADD	FOREIGN	KEY	(SupervisorID)
				REFERENCES	Employees	(EmployeeID);

This	model	is	simple	to	implement,	and	because	of	the	way	it	is	designed,	it	is	impossible	to
build	a	hierarchy	that	is	inconsistent.	By	“inconsistent,”	we	do	not	mean	that	it	will	not	guarantee
that	an	employee	will	not	be	assigned	to	the	wrong	supervisor,	but	rather	that	we	will	not	get
different	answers	about	who	the	supervisor	of	the	employee	is.	Suppose	for	a	moment	that	there	is
a	reorganization	of	the	company.	We	now	want	Nya	to	report	to	Lee,	and	then	we	want	Tom	to
report	to	Aliysa.	This	is	done	with	two	UPDATE	statements	as	shown	in	Listing	10.2.

Listing	10.2	Reorganizing	the	company’s	supervisors

Click	here	to	view	code	image

UPDATE	Employees	SET	SupervisorID	=	5	WHERE	EmployeeID	=	4;
UPDATE	Employees	SET	SupervisorID	=	3	WHERE	EmployeeID	=	2;

If	you	are	observant,	you	might	have	noticed	that	Lee	still	reports	to	Tom	even	after	the
reorganization.	But	we	did	not	update	his	record.	In	fact,	we	do	not	have	to,	as	you	can	see	in
Figure	10.3.



Figure	10.3	Employees	and	supervisors	after	the	reorganization	with	modified	records
highlighted

So	even	though	Lee’s	record	was	never	directly	modified,	the	data	remains	consistent.	Such	is	the
power	of	keeping	data	normalized!
And	that	brings	us	to	an	important	point.	This	is	the	only	model	that	is	completely	and	properly
normalized,	requiring	no	metadata	whatsoever.	With	no	metadata	to	maintain,	it	is	impossible	to
create	an	inconsistent	hierarchy	with	this	model.
However,	the	query	performance	required	to	extract	data	out	of	a	hierarchy	at	an	arbitrary	depth
is	typically	unacceptable.	Listing	10.3	demonstrates	a	simplistic	approach	that	works	for	a	fixed
level	of	depth	(in	this	case,	three	levels).

Listing	10.3	Three	levels	of	self-joins

Click	here	to	view	code	image

SELECT	e1.EmpName	AS	Employee,	e2.EmpName	AS	Supervisor,
		e3.EmpName	AS	SupervisorsSupervisor
FROM	Employees	AS	e1
		LEFT	JOIN	Employees	AS	e2
				ON	e1.SupervisorID	=	e2.EmployeeID
		LEFT	JOIN	Employees	AS	e3
				ON	e2.SupervisorID	=	e3.EmployeeID;

If	you	need	to	query	at	a	different	depth	than	three	levels	as	shown	in	Listing	10.3,	you	would
have	to	revise	the	query.	A	query	that	allows	for	variable	depth	using	the	adjacency	list	model
will	likely	be	slow	and	inefficient.	For	this	reason,	we	suggest	that	you	combine	the	adjacency
list	model	with	one	of	the	other	models	described	subsequently	in	this	chapter.	You	would	use	the
adjacency	list	model	to	build	a	consistent	hierarchy,	then	derive	the	required	metadata	to
accurately	represent	the	other	models.

Things	to	Remember
	The	adjacency	list	simply	adds	a	column	to	the	table	and	uses	a	foreign	key	that	self-
references	the	table’s	primary	key.	No	metadata	is	needed.
	Always	use	the	adjacency	list	model	to	build	a	consistent	hierarchy	that	is	useful	for	the
other	models	discussed	in	subsequent	items.

Item	59:	Use	Nested	Sets	for	Fast	Querying	Performance	with	Infrequent
Updates
In	the	cited	example	of	an	organization	chart,	it	might	be	uncommon	to	see	the	chart	change
frequently.	The	changes	to	the	chart	might	be	done	once	every	few	years,	if	even	that	often.	In	such



cases,	the	hierarchy	is	a	good	candidate	for	nested	sets,	popularized	by	Joe	Celko.	It	is	easier	to
illustrate	how	it	works	than	to	describe	it,	so	we	will	start	with	Figure	10.4.	Pay	particular
attention	to	how	the	numbering	is	assigned,	going	from	left	to	right,	descending	whenever	there
are	children	and	ascending	only	when	there	are	no	more	siblings.	Note	that	each	node	gets	a	pair
of	numbers;	“left”	numbers	are	colored	green,	and	“right”	numbers	are	colored	red.

Figure	10.4	Organization	chart	with	numbering	for	nested	sets

Note	that	there	are	12	employees,	then	consider	that	the	topmost	employee—Amy,	the	president—
has	1	and	24	assigned	to	her	“left”	and	“right,”	respectively.	Employees	who	have	no	employees
under	them	have	numbers	that	are	different	by	only	one.	In	the	case	of	Nya,	her	left-side	number	is
3	and	her	right-side	number	is	4.	So	each	node	in	this	hierarchy	has	a	pair	of	numbers,	and	the
range	of	numbers	available	to	this	hierarchy	is	1	to	24,	or	double	the	number	of	nodes.	The
topmost	node	would	have	the	difference	of	(<numbers	of	nodes>	*	2)	–	1.	From	this	assignment,
we	can	deduce	a	few	things:

	A	node	with	no	children	will	have	a	difference	of	only	1	in	its	left	and	right	numbers.
	Additionally,	we	can	count	numbers	of	nodes	below	a	node	with	the	formula	(right	–	(left	+
1))/2.	In	Aliya’s	case,	it	works	out	to	be	(23	–	(10	+	1))/2,	which	is	6	nodes	below	him.
	We	can	determine	all	children	of	a	given	node	by	looking	for	nodes	whose	left	and	right
numbers	are	both	contained	within	the	range	of	the	considered	node’s	own	left	and	right
numbers.
	Likewise,	we	can	trace	the	ancestry	by	finding	nodes	whose	left	and	right	numbers	are	not
contained	within	the	considered	node’s	own	range.

So,	if	we	continue	with	the	same	table	structure	we	considered	in	Item	58,	“Use	an	adjacency	list
model	as	the	starting	point,”	the	only	difference	would	be	adding	two	more	columns	to	provide
the	necessary	metadata	for	describing	the	nested	sets.	Let’s	call	them	lft	and	rgt	to	avoid
collisions	with	the	SQL	functions	LEFT()	and	RIGHT().	Listing	10.4	on	the	next	page	shows
how	you	can	create	a	table	that	implements	a	nested	set.

Listing	10.4	Table	creation	SQL	with	lft	and	rgt	metadata	columns	for	the	nested	set

Click	here	to	view	code	image

CREATE	TABLE	Employees	(



		EmployeeID	int	PRIMARY	KEY,
		EmpName	varchar(255)	NOT	NULL,
		EmpPosition	varchar(255)	NOT	NULL,
		SupervisorID	int	NULL,
		lft	int	NULL,
		rgt	int	NULL
);

Per	the	recommendation	from	Item	58,	we	keep	the	adjacency	list	model.	That	makes	it	easy	for
us	to	rebuild	the	hierarchy	if	we	need	to	do	a	wholesale	change.	Let’s	start	with	some	examples	of
querying	the	hierarchy	using	nested	sets.
Listing	10.5	shows	how	to	find	all	children	of	a	given	node.

Listing	10.5	Query	to	get	all	children

SELECT	e.*
FROM	Employees	AS	e
WHERE	e.lft	>=	@lft
		AND	e.rgt	<=	@rgt;

Note	that	it	is	necessary	to	apply	filters	to	both	the	lft	and	rgt	columns	to	avoid	getting
nonsensical	results	because	we	want	only	the	pair	of	lft	and	rgt	numbers	that	is	contained
within	the	range	of	the	given	pair	of	@lft	and	@rgt.	Alternatively,	you	can	use	>	and	<	instead
of	>=	and	<=,	respectively,	if	you	do	not	want	to	include	the	given	node	for	which	you	are	finding
children	in	the	result.
Listing	10.6	demonstrates	the	opposite	scenario	where	we	want	to	find	all	ancestors	of	a	given
node.

Listing	10.6	Query	to	get	all	ancestors

SELECT	*
FROM	Employees	AS	e
WHERE	e.lft	<=	@lft
		AND	e.rgt	>=	@rgt;

Similar	to	what	you	saw	in	Listing	10.5,	we	have	to	apply	against	both	lft	and	rgt	to	ensure
that	we	do	not	get	other	parent	nodes	that	are	not	the	ancestors	of	that	node.
We	would	need	many	more	pages	to	show	examples	of	how	you	can	manage	the	nested	sets	using
stored	procedures	or	triggers,	but	the	queries	should	at	least	give	you	an	idea	of	how	you	can
rebuild	the	hierarchy.	For	example,	you	can	create	a	stored	procedure	that	contains	iterative	logic
to	assign	the	lft	and	rgt	numbers	to	each	node	based	on	the	current	SupervisorID	value.
The	biggest	downside	with	the	nested	set	model	is	that	a	change	to	the	hierarchy,	especially	in
cases	of	moving	a	node	from	one	branch	to	another	branch,	almost	always	requires	updating	the
entire	table’s	lft	and	rgt	metadata	to	stay	consistent.	If	you	anticipate	that	your	hierarchy	will
change	more	often,	consider	the	approaches	discussed	in	subsequent	items.	The	other	issue	to
consider	is	that	the	nested	sets	as	shown	here	really	work	only	if	the	hierarchy	has	a	single	root
node.	If	you	have	multiple	hierarchies	with	independent	roots,	additional	logic	would	be
necessary	to	filter	to	only	a	given	hierarchy.



Things	to	Remember
	You	must	maintain	the	nested	sets	model	using	a	stored	procedure	to	encapsulate	the	logic
behind	building	the	set	and	assigning	correct	left	and	right	numbers	to	each	node.
	The	nested	sets	model	is	not	good	for	frequent	updates	because	changes	to	the	hierarchy
require	renumbering	several	other	nodes,	likely	the	entire	table,	which	makes	it	susceptible
to	deadlocking.
	Getting	a	count	requires	no	lookups	of	other	records	as	it	can	be	calculated	from	the	lft
and	rgt	metadata	columns,	making	the	nested	sets	model	very	efficient	for	maintaining
statistics.
	The	nested	sets	model	works	best	with	only	a	single	hierarchy	with	a	single	root	node.	If
you	need	multiple	hierarchies	and	therefore	multiple	root	nodes,	consider	other	models.

Item	60:	Use	a	Materialized	Path	for	Simple	Setup	and	Limited	Searching
A	materialized	path	is	relatively	simple	to	set	up	and	much	easier	to	understand	than	nested	sets.
Conceptually,	it	is	no	different	from	what	we	use	for	file	system	paths.	Instead	of	folders	and
files,	we	use	the	primary	keys	so	that	we	can	describe	the	hierarchy	in	a	much	more	compact
format.	We	can	create	the	Employees	table	containing	an	extra	column	to	hold	the	needed
metadata	for	the	materialized	path	model	as	depicted	in	Listing	10.7.

Listing	10.7	Table	creation	SQL	with	a	column	for	materialized	path	metadata

Click	here	to	view	code	image

CREATE	TABLE	Employees	(
		EmployeeID	int	PRIMARY	KEY,
		EmpName	varchar(255)	NOT	NULL,
		EmpPosition	varchar(255)	NOT	NULL,
		SupervisorID	int	NULL,
		HierarchyPath	varchar(255)
);

We	would	then	populate	the	data	similarly	to	Figure	10.5.

Figure	10.5	Employees	with	materialized	path	metadata



Note	that	there	is	no	universal	convention	for	this	solution.	The	slash	is	as	good	a	placeholder	as
any	other	for	separating	the	primary	keys,	and	in	the	interest	of	making	the	queries	simpler,	the
example	includes	both	root	and	reflexive	nodes	at	the	expense	of	increased	storage.	It	is	possible
to	omit	the	root	and	reflexive	nodes,	but	you	must	revise	your	queries	accordingly	for	cases
where	you	need	to	include	the	record	representing	itself	or	the	root	node.	As	you	look	at	the
figure,	note	that	the	materialized	path	method	makes	it	easy	to	find	children	and	how	deep	a	node
is.
Listing	10.8	shows	sample	SQL	for	finding	all	children	within	a	given	node.

Listing	10.8	Finding	all	children	for	a	node

Click	here	to	view	code	image

SELECT	e.*
FROM	Employees	AS	e
WHERE	e.HierarchyPath	LIKE	@NodePath	+	'%';

In	order	to	find	all	employees	under	Tom	LaPlante’s	charge,	you	would	specify	“1/2/”	for	the
@NodePath.	If	you	are	concerned	about	performance,	indexing	the	HierarchyPath	column
should	relieve	issues,	at	least	where	wildcards	appear	only	at	the	end	of	the	string.	As	you
learned	in	Item	28,	“Write	sargable	queries	to	ensure	that	the	engine	will	use	indexes,”	the	query
given	in	Listing	10.8	is	sargable	because	we	append	the	wildcard	only	to	the	end.
We	can	also	find	all	ancestors	of	a	given	node,	as	shown	in	Listing	10.9,	but	alas,	it	is	not
sargable.

Listing	10.9	Finding	all	ancestors	for	a	node

Click	here	to	view	code	image

SELECT	e.*
FROM	Employees	AS	e
WHERE	CHARINDEX(CONCAT('/',
		CAST(e.EmployeeID	AS	varchar(11)),	'/'),	@NodePath)	>	0;

Note
The	sample	is	specific	to	SQL	Server;	all	DBMSs	have	different	implementations	of
the	CHARINDEX()	and	CAST()	functions.

The	@Nodepath	would	reference	the	employee’s	own	path.	So	to	find	Lee’s	ancestor,	you	need
to	pass	in	“1/2/5.”	So,	if	your	requirement	is	such	that	you	need	to	search	the	tree,	especially	in
the	middle	or	at	the	bottom,	extensively	and	fast,	the	materialized	path	may	not	be	the	best
solution	for	you.	You	will	run	into	similar	problems	whenever	you	need	to	deal	with	branches	that
require	you	to	insert	wildcards	in	the	middle	of	the	predicate	value.	A	possible	option	is	to	create
another	column	that	stores	the	hierarchy	in	the	reverse	direction	and	index	it.	However,	as	this
includes	both	storage	for	data	and	an	index,	it	is	quite	an	expensive	way	to	do	it.
Note	also	that	we	used	varchar(255)	as	the	data	type	for	the	HierarchyPath	column.



You	will	find	that	most,	if	not	all,	database	engines	place	a	restriction	on	how	many	characters
you	are	allowed	to	index	your	text	columns.	That	also	places	a	limit	on	the	length	of	your
hierarchy	path.	The	worst	part	is	that	you	might	break	the	limit	because	the	hierarchy	is	too	wide
(e.g.,	there	are	large	keys	taking	several	digits	each	between	each	level)	or	because	the	hierarchy
is	too	deep.	So	it	is	not	trivial	to	proactively	check	whether	you	are	in	danger	of	exceeding	the
character	allocation	for	the	column.	If	your	engine	permits,	a	possible	option	is	to	use
varchar(MAX)	to	allow	for	effectively	unlimited	storage	and	then	index	on	only	the	prefix,
with	the	caveat	that	queries	could	return	strange	results	or	have	inconsistent	performance.

Things	to	Remember
	Materialized	path	has	the	advantage	of	being	fairly	simple	to	understand	and	follow,
because	it	is	based	on	familiar	metaphors	such	as	file	system	paths.
	It	is	difficult	to	clearly	identify	the	limit	of	the	design	because	there	is	no	simple	way	of
knowing	in	advance	if	you	will	break	the	character	limit	of	the	index	because	a	hierarchy	is
too	deep	or	too	wide.	For	that	reason,	you	must	place	an	arbitrary	and	conservative
restriction	on	how	large	the	hierarchy	can	be	to	avoid	problems.
	The	search	on	materialized	path	is	effective	in	only	one	direction	because	you	cannot	create
a	sargable	query	when	there	are	wildcards	at	the	start	or	within	the	predicate,	rather	than	at
the	end.	Factor	this	consideration	into	your	design.

Item	61:	Use	Ancestry	Traversal	Closure	for	Complex	Searching
The	last	option	available	for	managing	hierarchical	data	is	to	use	an	ancestry	closure	table.	This
is	basically	a	relational	approach	to	the	materialized	path	method	we	saw	in	Item	60,	“Use	a
materialized	path	for	simple	setup	and	limited	searching.”	Instead	of	using	a	string	in	a	column	of
a	table,	we	use	a	second	table,	and	for	each	“connection”	between	nodes,	we	create	a	record	for
the	metadata.	Unlike	the	adjacency	list	model	from	Item	58,	“Use	an	adjacency	list	model	as	the
starting	point,”	where	we	record	only	the	immediate	connection,	we	record	all	possible
connections	irrespective	of	how	many	nodes	there	are	between	the	two	nodes	being	considered.
Listing	10.10	shows	how	we	could	set	it	up	for	the	Employees	table.

Listing	10.10	Table	creation	SQL	with	an	ancestry	table

Click	here	to	view	code	image

CREATE	TABLE	Employees	(
		EmployeeID	int	NOT	NULL	PRIMARY	KEY,
		EmpName	varchar(255)	NOT	NULL,
		EmpPosition	varchar(255)	NOT	NULL,
		SupervisorID	int	NULL,
);

CREATE	TABLE	EmployeesAncestry	(
		SupervisedEmployeeID	int	NOT	NULL,
		SupervisingEmployeeID	int	NOT	NULL,
		Distance	int	NOT	NULL,
		PRIMARY	KEY	(SupervisedEmployeeID,	SupervisingEmployeeID)
);



ALTER	TABLE	EmployeesAncestry
		ADD	CONSTRAINT	FK_EmployeesAncestry_SupervisingEmployeeID
				FOREIGN	KEY	(SupervisingEmployeeID)
						REFERENCES	Employees	(EmployeeID);

ALTER	TABLE	EmployeesAncestry
		ADD	CONSTRAINT	FK_EmployeesAncestry_SupervisedEmployeeID
				FOREIGN	KEY	(SupervisedEmployeedID)
						REFERENCES	Employees	(EmployeeID);

Note	that,	unlike	in	other	models,	the	metadata	is	now	stored	in	a	separate	table,
EmployeesAncestry.	We	would	then	populate	the	data	as	shown	in	Figure	10.6.

Figure	10.6	Employees	with	ancestry	metadata	records;	ancestry	table	truncated

For	brevity,	we	do	not	show	all	records	that	should	be	in	the	ancestry	table,	but	Figure	10.6
should	show	enough	so	that	you	get	an	idea	of	how	you	should	populate	the	tables.	Consider	Nya
Maeng,	an	associate,	who	is	supervised	by	Tom	LaPlante,	who	in	turn	is	supervised	by	Amy	Kok.
That	is	a	total	of	two	connections	among	three	nodes.	We	must	enumerate	all	possible	connections
for	Nya.	For	that	reason,	we	create	three	records:

1.	A	reflexive	record	where	Nya	is	both	the	supervised	and	supervising	employee,	with	a
distance	of	0

2.	A	record	that	identifies	Nya’s	immediate	supervisor,	Tom,	as	the	supervising	employee,
with	a	distance	of	1

3.	A	record	that	identifies	Amy—because	she	supervises	Tom—as	the	supervising	employee,
but	with	a	distance	of	2

Because	all	possible	connections	are	enumerated	in	the	ancestry	table,	you	can	now	simply	join
the	ancestry	table	to	the	data	table	to	trace	the	complete	path	from	a	given	node	to	whatever	node
interests	you.
As	with	materialized	paths,	there	is	no	universal	convention	for	this	solution,	so	you	will	see
some	variances	out	there.	We	decided	to	use	Distance,	though	you	might	see	others	refer	to
Depth.	We	feel	that	the	term	depth	is	misleading	because	it	implies	the	depth	of	the	node	from
the	root,	but	most	of	the	time	we	are	more	interested	in	finding	out	how	many	levels	there	are
between	two	nodes,	neither	of	which	is	necessarily	the	root	of	the	tree.	Thus,	we	use	the	term



distance.	We	also	need	to	manually	maintain	that	information,	as	certain	classes	of	queries	will
depend	on	distance,	which	is	useful	when	doing	partial	tree	extraction.	Also,	it	is	common	to	call
the	columns	in	the	ancestry	table	ancestor	and	descendant,	but	again,	this	is	relative;	one
is	an	ancestor	to	the	other	and	is	equally	a	descendant	of	yet	another.	Also,	labeling	columns	as
SupervisingEmployeeID	helps	in	understanding	how	to	write	the	queries,	as	you	will	see
shortly.	Finally,	there	is	the	consideration	of	whether	to	include	reflexive	records—you	might	feel
that	records	such	as	(1,	1,	0)	and	(2,	2,	0),	which	indicate	that	Amy	supervises	herself	and	Tom
supervises	himself,	are	superficial.	However,	not	including	the	reflexive	records	in	the	ancestry
table	means	you	have	more	complicated	queries	if	you	need	to	show	the	sought	employee	within
the	result.
The	biggest	downside	of	using	an	ancestry	table	is	that	maintenance	of	the	table	is	much	more
involved	because	you	will	likely	insert	and	delete	several	records	when	changing	the	hierarchy	in
order	to	keep	the	metadata	accurate.	This	can	be	alleviated	by	wrapping	the	logic	into	a	stored
procedure,	and	if	you	continue	to	use	the	adjacency	list	model,	you	have	the	option	of	using	table
triggers	to	monitor	the	SupervisorID	column	of	the	Employees	table	to	automatically
update	the	ancestry	table.	Though	this	is	a	comparatively	more	normalized	solution,	if	the
metadata	in	an	ancestry	table	is	not	maintained	correctly,	you	could	potentially	end	up	with	an
inconsistent	hierarchy	and	thus	obtain	wrong	results	for	your	queries.
Listing	10.11	shows	the	sample	SQL	for	finding	all	children	within	a	given	node.

Listing	10.11	Finding	all	children	for	a	node

Click	here	to	view	code	image

SELECT	e.*
FROM	Employees	AS	e
		INNER	JOIN	EmployeesAncestry	AS	a
				ON	e.EmployeeID	=	a.SupervisedEmployeeID
WHERE	a.SupervisingEmployeeID	=	@EmployeeID
		AND	a.Distance	>	0;

In	order	to	find	all	employees	under	Tom	LaPlante’s	charge,	you	would	specify	“3”	for	the
@EmployeeID.	Unlike	with	other	methods,	it	is	very	easy	to	further	restrict	the	depth.	For
example,	we	could	add	a	criterion	that	Distance	must	be	between	1	and	3	to	list	only
employees	who	are	supervised	under	Tom	up	to	two	levels	apart.
We	can	also	find	all	ancestors	of	a	given	node,	as	shown	in	Listing	10.12,	and	unlike	the
equivalent	query	for	materialized	path	discussed	in	Item	60,	it	is	still	sargable.

Listing	10.12	Finding	all	ancestors	for	a	node

Click	here	to	view	code	image

SELECT	e.*
FROM	Employees	AS	e
		INNER	JOIN	EmployeesAncestry	AS	a
				ON	e.EmployeeID	=	a.SupervisedEmployeeID
WHERE	e.EmployeeID	=	@EmployeeID
		AND	a.Distance	>	0;



As	you	see,	the	query	is	similar	to	the	one	shown	in	Listing	10.11,	the	only	difference	being	that
we	reference	the	SupervisedEmployeeID	column	instead	of	the
SupervisingEmployeeID	column	in	the	join.	This	should	illustrate	the	earlier	point	about
why	it	might	be	desirable	to	use	a	more	descriptive	name	than	just	“ancestor”	and	“descendant.”
We	think	you	will	find	that	queries	about	the	hierarchical	model	are	quite	straightforward	and
mainly	are	done	with	a	join	between	the	data	table	and	the	ancestry	table,	or	in	some	cases	with
an	existence	check.	For	example,	to	find	all	nodes	that	have	no	children,	we	would	use	NOT
EXISTS	as	shown	in	Listing	10.13.

Listing	10.13	Finding	all	nodes	with	no	children

Click	here	to	view	code	image

SELECT	e.*
FROM	Employees	AS	e
WHERE	NOT	EXISTS	(
		SELECT	NULL
		FROM	EmployeesAncestry	AS	a
		WHERE	e.EmployeeID	=	a.SupervisingEmployeeID
				AND	a.Distance	>	0
		);

Observe	that	because	we	opted	to	include	reflexive	records	in	the	ancestry	table,	we	have	to
exclude	those	when	we	search	for	nodes	other	than	the	reflexive	records.	Had	we	opted	not	to
keep	reflexive	records	within	the	ancestry	table,	you	would	find	that	you	need	to	UNION	the
results	from	Listings	10.11	and	10.12	with	the	record	of	the	sought	employee.	That	would	make
the	queries	from	Listings	10.11	and	10.12	more	convoluted,	but	it	would	simplify	the	queries
similarly	to	what	is	shown	in	Listing	10.13.

Things	to	Remember
	Consider	the	ancestry	closure	traversal	model	for	when	you	require	both	frequent	updates
and	ease	of	searching,	especially	in	the	middle	of	a	tree,	to	justify	the	extra	complexity	of
maintaining	an	ancestry	table.
	Though	it	is	normalized,	failing	to	keep	the	metadata	in	the	ancestry	table	up	to	date	could
result	in	incorrect	query	results.	This	can	be	alleviated	by	using	triggers	on	the
Employees	table	to	automatically	modify	the	ancestry	table,	but	this	is	not	free.



Appendix.	Date	and	Time	Types,	Operations,	and	Functions

Each	database	system	has	a	variety	of	functions	that	you	can	use	to	calculate	or	manipulate	date
and	time	values.	Each	database	system	also	has	its	own	rules	regarding	data	types	and	date	and
time	arithmetic.	The	SQL	Standard	specifically	defines	three	functions,	CURRENT_DATE(),
CURRENT_TIME(),	and	CURRENT_TIMESTAMP(),	but	many	commercial	database	systems
do	not	support	all	three	function	calls.	To	help	you	work	with	date	and	time	values	in	your
database	system,	we	provide	a	brief	summary	of	the	data	types	and	arithmetic	operations
supported.	Following	that,	we	have	compiled	a	list	of	functions	for	several	of	the	major	database
systems	that	you	can	use	to	work	with	date	and	time	values.	The	lists	in	this	appendix	include	the
function	name	and	a	brief	description	of	its	use.1	Consult	your	database	documentation	for	the
specific	syntax	to	use	with	each	function.

1.	Most	of	this	material	previously	appeared	in	SQL	Queries	for	Mere	Mortals,	Third	Edition	by	John	L.	Viescas	and	Michael
J.	Hernandez	(Addison-Wesley,	2014).

IBM	DB2

Data	Types	Supported
DATE

TIME

TIMESTAMP

Arithmetic	Operations	Supported



Functions









Microsoft	Access

Data	Types	Supported
DATETIME



Note
Although	the	Access	user	interface	displays	the	data	type	name	as	Date/Time,	the
correct	name	for	CREATE	TABLE	statements	is	DATETIME.

Arithmetic	Operations	Supported

Functions





Microsoft	SQL	Server



Data	Types	Supported
date

time

smalldatetime

datetime

datetime2

datetimeoffset

Arithmetic	Operations	Supported



Functions





MySQL

Data	Types	Supported
DATE

DATETIME

TIMESTAMP

TIME

YEAR

Arithmetic	Operations	Supported



Note
The	syntax	for	intervals	is	INTERVAL	<expr>	<unit>,	where	<unit>	is	one	of	the
keywords	listed	above,	as	in	INTERVAL	31	day	or	INTERVAL	15	minute.
It	is	also	legal	to	add	an	integer	of	decimal	value	to	or	subtract	it	from	any	of	the
date	and	time	data	types,	but	MySQL	first	converts	the	date	or	time	value	to	a	number
and	then	performs	the	operation.	For	example,	adding	30	to	the	date	value	2012-11-
15	yields	the	number	20121145.	Adding	100	to	the	time	value	12:20:00	yields
122100.	Be	sure	to	use	the	INTERVAL	keyword	when	performing	date	and	time
arithmetic.

Functions











Oracle

Data	Types	Supported
DATE

TIMESTAMP

INTERVAL	YEAR	TO	MONTH

INTERVAL	DAY	TO	SECOND

Arithmetic	Operations	Supported



Functions





PostgreSQL

Data	Types	Supported
DATE
TIME	(with	or	without	time	zone)
TIMESTAMP	(with	or	without	time	zone)

INTERVAL

Arithmetic	Operations	Supported



Functions







Index

Symbols
&	(ampersand)	operator,	concatenation	symbol,	24,	249
+	(plus	sign)	operator,	concatenation	symbol,	24,	249
||	(vertical	bars)	operator,	concatenation	symbol,	24,	248–249

A
Absent	data.	See	Null	values.
Access
choosing	a	primary	key,	88
Edit	Relationships	dialog	box,	64
execution	plans,	204–205,	212
ignoring	columns,	87–88
importing	data,	86–87
naming	tables,	88
support	for	CTEs,	249
tools,	86–89
unpivoting	sales	data,	88–89
upsizing	from,	63–64

Access,	date	and	time
arithmetic	operations,	303–304
data	types,	303
functions,	304–305

Accumulating	snapshot	fact	tables,	46
Adjacency	list	model,	hierarchical	data,	286–288
Age	calculation,	SQL	code	example,	113
Aggregation
counting	items	in	a	group,	156–159
distinct	counts,	163–166
finding	maximum/minimum	values,	150–155
moving	aggregates,	172–177
partitioning	data	into	groups.	See	GROUP	BY	clause.
running	sums,	calculating,	CTEs,	166–169
setting	bounds	for	window	frames,	CTEs,	172–177
sizing	window	frames,	CTEs,	172–177
solving	complex	problems,	145–150

Aggregation,	rows



Adjacent,	CTEs,	166–169
contiguous	ranking,	CTEs,	169–172
counting,	137
gaps	in	rankings,	CTEs,	171–172
numbering,	CTEs,	169–172
physical	grouping.	See	RANGE	keyword.
physical	offsets.	See	ROWS	keyword.
ranking,	CTEs,	169–172

Ampersand	(&)	operator,	concatenation	symbol,	24,	249
ANALYZE	option,	210
Ancestry	traversal,	hierarchical	data,	294–298
ANSI	(American	National	Standards	Institute),	3
ANSI	NCITS-H2	organization,	5
ANSI	X3.135-1986	Database	Language	SQL	standard,	3–4
Appointment	calendar,	creating,	275–277
Arvin,	Troels,	70,	72
AS	clause,	26
AS	keyword,	26
Atomic	data,	21
Attributes,	21,	101.	See	also	Columns.
Averaging	values,	137
AVG()	function,	137

B
Bidirectional	indexes,	60
Books	and	publications.	See	also	Online	resources.
Database	Design	for	Mere	Mortals,	11,	19
Handbook	of	Relational	Database	Design,	19
The	Relational	Model	for	Database	Management,	120
SQL	Queries	for	Mere	Mortals,	Third	Edition,	113

BOOLEAN	data	type,	null	values,	71–72
Boyce-Codd	normal	form,	38
B-tree	structure,	54–55,	60,	218
Buffer	usage,	displaying,	210
BUFFERS	option,	210

C
Calculated	columns
attaching	a	trigger,	26



for	DB2,	listing,	28
defining	columns,	26
drawbacks,	29
indexing,	29
for	Oracle,	listing,	28
overview,	25–29
sample	table	definition,	25,	27,	28

Calculated	data
calculating	combinations	for	N	items,	237
calculating	values	across	entire	sets,	145–150
example	of	SQL	code,	25
indexing	results,	74–77
storing,	45

Calendar,	creating,	275–277
Cartesian	Products
calculating	the	combinations	for	N	items,	237
combining	rows	between	two	tables,	227–230
creating	combinations	of	things,	239
description,	105–106
finding	partial	matches,	240–245
pairing	rows	in	a	table	with	all	other	rows,	235–240
ranking	importance	of	qualifications,	240–245
ranking	rows	by	equal	quantiles,	231–235

Cascading	updates,	primary	keys,	13
CASE	statements
overview,	110–114
predicates,	111
search	conditions,	111
searched,	111
simple,	111
SQL	code	example,	111–113
value	expressions,	111

Celko,	Joe,	123
Chamberlin,	Donald,	2
CHECK	constraint,	69
Clustered	indexes,	55
Codd,	Edgar	F.,	1,	101,	120
Columns.	See	also	Calculated	columns.
adding/removing,	19–20



getting,	102
grouping,	136
ignoring	in	Access,	87–88
names,	simplifying	or	clarifying	with	views,	82
one	property	per	column,	21–25
selecting,	102

Combinations	for	N	items,	calculating,	237
Combining	rows,	105–106,	227–230.	See	also	Cartesian	Products.
Combining	things,	uses	for,	239
Common	table	expressions	(CTEs).	See	CTEs	(common	table	expressions).
Compound	primary	keys,	14
CONCAT()	function
databases	supporting,	24
listing,	24
nesting,	24
support	for,	248–249

Constraints	on	table	data
CHECK	constraint,	69
DEFAULT	clause,	69
default	values	for	fields,	69
FOREIGN	KEY	constraint,	68
foreign	keys	for	referential	integrity,	68
limiting	fields	to	specified	values,	69
NOT	NULL,	68
PRIMARY	KEY	constraint,	68
UNIQUE	constraint,	68,	73
unique	record	identity,	68,	73

Converting	values,	based	on	values	in	a	tally	table,	261–268
Correlated	subqueries,	184–189
Cost	estimates,	displaying,	210
COSTS	option,	210
COUNT()	function
Access	restrictions,	166
counting	items	in	a	group,	163–166
dealing	with	zero	values,	159–163
description,	137
distinct	counts,	163–166
erroneous	messages,	156–159

Counting



distinct	counts,	163–166
items	in	a	group,	156–159,	163–166

CROSS	JOIN	keywords,	106
CROSSTAB,	280
CTEs	(common	table	expressions)
in	Access,	249
in	MySQL,	249
recursive,	194–196
SQL	code	example,	148–150
in	subqueries,	SQL	code	example,	191–193
traversing	a	hierarchy,	SQL	code	example,	194–195

CTEs	(common	table	expressions),	aggregation
running	sums,	calculating,	166-169
setting	bounds	for	window	frames,	172-177
sizing	window	frames,	172-177

CTEs	(common	table	expressions),	aggregation,	rows
Adjacent,	166-169
contiguous	ranking,	169-172
gaps	in	rankings,	171-172
numbering,	169-172
ranking,	169-172

CUBE	clause,	138–139
CURRENT_DATE()	function,	299
CURRENT_TIME()	function,	299
CURRENT_TIMESTAMP()	function,	299

D
\d	command,	DB2,	217
Data	about	data.	See	Metadata.
Data	clustering,	indexes,	58
Data	manipulation,	with	views,	82
Data	sets,	linking,	102–103
Database	2	(DB2).	See	DB2	(Database	2).
Database	Design	for	Mere	Mortals,	11,	19
Database	information,	online	resources,	5–6
Database	rankings,	online	resources,	6
Databases.	See	also	specific	databases.
adding/removing	data,	19–20
normalization.	See	Normalization.



samples	used	in	examples,	6–7
used	in	this	book,	summary	of,	6–7

Date,	Chris,	4,	122
Date	and	time
CURRENT_DATE()	function,	299,	299
CURRENT_TIME()	function,	299,	299
CURRENT_TIMESTAMP()	function,	299,	299
DATEADD()	function,	27,	27
in	filtered	or	partial	indexes,	67
SQL	standard	functions,	299,	299
time,	handling	in	denormalization,	45

Date	and	time,	Access
arithmetic	operations,	303–304
data	types,	303
functions,	304–305

Date	and	time,	DB2
arithmetic	operations,	299–300
data	types,	299
functions,	300–303

Date	and	time,	MySQL
arithmetic	operations,	308–309
data	types,	308
functions,	310–312

Date	and	time,	Oracle
arithmetic	operations,	313
data	types,	313
functions,	313–314

Date	and	time,	PostgreSQL
arithmetic	operations,	315
data	types,	315
functions,	315–316

Date	and	time,	SQL	Server
arithmetic	operations,	306
data	types,	305
functions,	306–308

Date	calculations	with	tally	tables,	268–274
Date	tables
appointment	calendar,	creating,	275–277
optimizing	queries,	273–274



simplifying	date	calculation,	268–274
DATEADD()	function,	27–28
DB2	(Database	2)
execution	plans,	202–203,	212
getting	metadata,	217
history	of	SQL,	3

DB2	(Database	2),	date	and	time
arithmetic	operations,	299–300
data	types,	299
functions,	300–303

db2look	command,	DB2,	217
DB-Engines,	online	resources,	5–6
Declarative	Referential	Integrity	(DRI),	31
DECODE,	279–280
DEFAULT	clause,	69
Default	values	for	fields,	69
Delete	anomalies,	16
Denormalization,	for	information	warehouses.	See	also	Normalization.
accumulating	snapshot	fact	tables,	46
adding	indicative	fields	to	tables,	45
avoiding	a	join,	44
documenting,	46
drilling	across,	45
drilling	down,	45
fact	tables,	45–46
handling	time,	45
overview,	43–46
periodic	snapshot	fact	tables,	45
repeating	groups,	45
replicating	identity	fields	in	tables,	44
slowly	changing	dimensions,	46
storing	calculated	values,	45
transaction	fact	tables,	45

DENSE_RANK()	function,	CTEs,	170–171
Depth	vs.	distance,	296
DESCRIBE	command,	Oracle,	217
Deterministic	functions,	vs.	nondeterministic,	26–28
Difference	operation,	106–108
Distance	vs.	depth,	296



Distinct	counts,	163–166
DISTINCT	keyword,	163–166
Divide	operation
description,	106
SQL	code	example,	122–123

Dividing	sets,	106
Documenting,	denormalization,	46
DRI	(Declarative	Referential	Integrity),	31
Drilling	across,	45
Drilling	down,	45
Duplicate	rows,	eliminating,	99
Duplicate	values,	preventing	with	primary	keys,	14

E
“Elephant	and	mouse”	problem,	223–224
Empty	grouping	sets,	138
Enforced	RI,	13,	30–33
Error	messages,	COUNT()	function,	156–158
ETL	(Extract,	Transform,	Load),	85–90
Examples	of	SQL	code
age	calculation,	76,	113
appointment	calendar,	creating,	275–277
CASE	statements,	110–114
case-insensitive	queries,	75
complex	GROUP	BY	clause,	144
concatenation,	24
converting	values	based	on	values	in	a	tally	table,	261–267
correlated	subqueries,	188–189
CUBE	clause,	sample	query,	139
date	calculations,	268–271
date	tables,	268–271,	273–274
defining	columns,	28
Difference	operation,	107
Divide	operation,	122–123
DRI	for	self-referencing	relationship,	65
EXCLUDE	NULL	KEYS	option,	48,	49
existence	check,	109
EXISTS	clause,	198–199
EXISTS	operator,	109



filtered	indexes,	66–67
filtering	date	ranges,	124–127
filtering	the	right	side	of	a	left	join,	132–134
finding	missing	data,	114
frustrated	join,	109
function	definition	for	SQL	Server,	27
generating	a	list	of	numbers,	194
generating	multiple	rows,	259–260
GROUPING	SETS	clause,	sample	query,	140
IGNORE	NULL	option,	50
index	creation,	59
indexes	on	a	table,	53
inline	expressions	for	Oracle,	28
INNER	JOIN,	emulating	an	Intersect	operation,	105
Intersect	operation,	104–105
joining	a	table	to	itself,	153
LEFT	JOIN	clause,	153,	199
mailing	labels,	skipping	blank	rows,	248–250
maximum/minimum	values,	finding,	152–155
non-correlated	subqueries,	185–187
nondeterministic	function,	76
non-sargable	queries,	129–131
normalizing	data,	20
NOT	IN	operator,	108
null	values	in	Access,	50
null	values	in	Oracle,	51–52
one	property	per	column,	22,	23
optimizing	queries	with	date	tables,	273–274
pivoting	data,	279–282
querying	metadata,	213–216
RANK()	function,	170
returning	original	data,	18,	24
ROLLUP	clause,	sample	query,	139
ROW_NUMBER()	function,	170
rows,	numbering	and	ranking,	170
running	sums,	calculating,	166–169
sample	databases	used	in,	6–7
sargable	queries,	129–131
scalar	subqueries,	183–184



separating	attributes,	23
sequencing	data,	254–256
solving	multiple-criteria	problems,	115–120
sort	operations,	67
splitting	into	tables	by	subject,	17
summarizing	data	with	tally	tables,	262–266
summary	tables,	91–92
syntax	for	SQL	SELECT	statements,	136
table	creation,	59
table	subqueries,	180–181
table	with	only	one	column	subqueries,	182–183
totals	query,	59
triggers,	61–65
using	LIKE	in	the	WHERE	clause,	58
views,	80–81,	121–122
WHERE	clause,	60

Examples	of	SQL	code,	Cartesian	Products
combining	rows	between	two	tables,	228–229
finding	partial	matches,	242–244
pairing	rows	in	a	table	with	all	other	rows,	235–240
ranking	rows	by	equal	quantiles,	232–233

Examples	of	SQL	code,	COUNT()	function
counting	items	in	a	group,	163–166
dealing	with	zero	values,	159–163
description,	137
erroneous	messages,	156–159

Examples	of	SQL	code,	creating	execution	plans
Access,	204–205
DB2,	202
MySQL,	207
Oracle,	208
PostgreSQL,	210

Examples	of	SQL	code,	creating	tables
for	calculated	data,	25
for	Customers,	31
for	Orders,	32
with	relationships,	36
with	separate	attributes,	23
for	SQL	Server,	27



Examples	of	SQL	code,	CTEs
solving	complex	problems,	148–150
in	subqueries,	191–193
traversing	a	hierarchy,	194–195

Examples	of	SQL	code,	excluding	null	values	in
PostgreSQL,	52
SQL	Server,	50
UNIQUE	indexes,	48,	49

Examples	of	SQL	code,	GROUP	BY	clause
instead	of	GROUPING	SETS	clause,	140
solving	complex	problems,	145–150
SQL	standards	compliance,	143–144
valid	vs.	invalid,	137–138

Examples	of	SQL	code,	HAVING	clause
counting	zero-value	rows,	160–163
finding	items	by	category,	148–150
solving	complex	problems,	145–150

Examples	of	SQL	code,	modeling	hierarchical	data
adjacency	list	model,	286–288
ancestry	tables,	294–297
getting	all	ancestors,	290,	293,	297
getting	all	children,	290,	292,	296–297
improving	query	performance,	290–291
materialized	path,	291–293
nested	lists,	290–291

Examples	of	SQL	code,	UNION	queries
normalizing	data,	20,	95–96
specifying	sort	order,	98

Examples	of	SQL	code,	window	functions
moving	aggregates,	172–177
running	sums,	167–168,	172–173

EXCLUDE	NULL	KEYS	option,	48–49
Execution	plans
Access,	204–205,	212
DB2,	202–203,	212
“elephant	and	mouse”	problem,	223–224
functional	description,	217–224
MySQL,	207
Oracle,	208–209,	212



Showplan	Capturer	tool,	205
SQL	Server,	205–206,	212

Execution	plans,	PostgreSQL
buffer	usage,	displaying,	210
cost	estimates,	displaying,	210
description,	209–212
output	format,	specifying,	210
performance	statistics,	displaying,	210
timing	information,	displaying,	210

Existence	check,	109
EXISTS	operator,	109,	198–199
EXPLAIN	option,	209–210
Exporting/importing	data
Access,	86–87
with	views,	83

Extensions,	SQL,	5
Extract,	Transform,	Load	(ETL),	85–90

F
Fact	tables,	45–46
Fields,	limiting	to	specified	values,	69
5NF	(fifth	normal	form),	37–43
Filtered	indexes,	including/excluding	subsets	of	data,	65–68
Filtering	data.	See	also	Finding	data.
aggregate	data,	138,	141,	145
date	ranges,	124–127
right	side	of	a	left	join,	132–134
the	right	side	of	a	left	join,	SQL	code	example,	132–134
rows,	102

Finding	data.	See	also	Filtering	data.
Divide	operation,	120–123
items	by	category,	148–150
maximum/minimum	values,	137,	150–155
missing	data,	SQL	code	example,	114
missing	records,	108–110
multiple-criteria	problems,	115–120
non-matches,	108–110
partial	matches,	240–245.	See	also	Cartesian	Products.
perfect	matches,	120–123
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FOREIGN	KEY	constraints,	17–18,	32–33,	68
Foreign	keys
defining	FOREIGN	KEY	constraints,	32–33
enforcing	RI,	30–33
for	referential	integrity,	68

FORMAT	option,	210
Frustrated	join,	SQL	code	example,	109
Functional	dependency,	143
Function-based	indexes,	75–77
Functions
for	aggregation,	136–137
inlining,	251
as	parameterized	views,	251
returning	entire	tables,	251
table-valued,	251

Functions,	date	and	time
Access,	304–305
DB2,	300–303
MySQL,	310–312
Oracle,	313–314
PostgreSQL,	315–316
SQL	Server,	306–308

G
GENERATED	keyword,	27–28
Generating
lists	of	numbers,	SQL	code	example,	194
rows	with	tally	tables,	257–261
running	sums,	167–169

GitHub,	online	resources,	7
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GROUP	BY	clause.	See	also	Aggregation.
aggregate	functions,	136–137.	See	also	specific	functions.
averaging	values,	137
calculating	values	across	entire	sets,	145–150
complex,	SQL	code	example,	144
counting	rows,	137
empty	grouping	sets,	138



filtering	aggregate	data,	138,	141,	145
finding	largest/smallest	value,	137
functional	dependency,	143
grouping	columns,	136
keeping	it	small,	142–145
ordering	result	sets,	138
overview,	135–142
population	standard	deviation,	calculating,	137
population	variance,	calculating,	137
sample	standard	deviation,	calculating,	137
sample	variance,	calculating,	137
solving	complex	problems,	145–150
summing	values,	137

Grouping	columns,	136
GROUPING	SETS	clause,	138–140
The	Guru’s	Guide	to	Transact-SQL,	93
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Hash	joins,	indexes,	57
HAVING	clause
comparing	aggregate	values,	145–150
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filtering	aggregate	data,	138
finding	items	by	category,	148–150
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solving	complex	problems,	145–150
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Hernandez,	Michael	J.,	11,	19,	113
Hierarchical	data,	modeling.	See	Modeling	hierarchical	data.
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DB2,	3
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relational	database	model,	1–2
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Relational	Technology,	Inc.,	3
SEQUEL	(Structured	English	Query	Language),	2
SEQUEL/2,	2
SEQUEL-XRM,	2
SQL	(structured	query	language),	2
SQL/DS	(SQL/Data	System),	3
standards,	3–5.	See	also	specific	standards.
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Wong,	Eugene,	2
X3H2	database	technical	committee,	3,	5

I
IBM,	in	the	history	of	SQL,	1–3
IBM	DB2.	See	DB2.
IBM	products.	See	specific	products.
IF	...	THEN	...	ELSE	statements.	See	CASE	statements.
Importing	data.	See	Exporting/importing	data.
Inconsistent	data,	eliminating	redundant	storage,	15–19
Index	scans,	52–56
Indexes
bidirectional,	60
B-tree	structure,	54–55,	60
on	calculated	results,	74–77
clustered,	55
combination	of	columns,	56
data	clustering,	58
effects	of	table	size,	55–56
filtered,	65–68.	See	also	Partitioned	tables.
function-based,	75–77
hash	joins,	57
index	scans,	52–56
join	efficiency,	57–58
most	common	type,	54–55
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nonclustered,	55
non-sargable	queries,	128
null	values,	47–52
ORDER	BY	clause,	efficiency,	60
partial,	65–68
performance	issues,	54
pipelining,	60
sargable	queries,	127–131
sort-merge	joins,	57
table	scans,	52–56
tuning	queries,	52–56
WHERE	clause,	efficiency,	56

Indexing	calculated	columns,	29
INFORMATION_SCHEMA,	212–217
getting	database	metadata,	212–217
getting	object	schemas,	217

InfoSphere	DataStage,	tools,	89
Ingres,	in	the	history	of	SQL,	2–3
Inlining	functions,	251
INNER	JOIN,	103,	105
Insert	anomalies,	15–16
Intersect	operation,	SQL	code	example,	104–105
IS	NULL	predicate,	47
ISO	9075:1989	Database	Language	SQL	with	Integrity	Enhancement	standard,	4
ISO	9075:1987	Database	Language	SQL	standard,	4
ISO/IEC	9075-11:2011	Part	11:	Information	and	Definition	Schemas,	212
ISO/IEC	9075:1992	Database	Language	SQL	standard,	4–5

J
Join	efficiency,	indexes,	57–58
JOIN	keyword
description,	102–103
instead	of	subqueries,	197–199
vs.	subqueries,	197–199

Join	operations
avoiding,	44
filtering	the	right	side	of	a	left	join,	132–134
frustrated,	109



INNER	JOIN,	103
JOIN	keyword,	102–103
joining	a	table	to	itself,	SQL	code	example,	153
NATURAL	JOIN,	103
OUTER	JOIN,	103
overview,	102–103
sort-merge,	57

K
Kimball,	Ralph,	45–46

L
LEFT	JOIN	clause,	SQL	code	example,	153,	199
Listings	of	SQL	code.	See	Examples	of	SQL	code.
Lossless	decomposition,	42

M
Mailing	labels
generating	blank	rows,	248–250
printing,	247–250

Materialized	path,	291–294
MAX()	function,	137
Maximum/minimum	values,	finding
MAX()	function,	137
MIN()	function,	137
SQL	code	example,	152–155
without	using	GROUP	BY,	150–155

Merging	sets,	106
Metadata,	getting
\d	command,	DB2,	217
DB2,	217
db2look	command,	DB2,	217
DESCRIBE	command,	Oracle,	217
INFORMATION_SCHEMA,	212–217
MySQL,	217
Oracle,	217
PostgreSQL,	217
SHOW	command,	MySQL,	217

Microsoft	Access.	See	Access.



Microsoft	products.	See	specific	products.
Microsoft	SQL	Server.	See	SQL	Server.
MIN()	function,	137
Minimum	values,	finding.	See	Maximum/minimum	values,	finding.
Modeling	hierarchical	data
adjacency	list	model,	286–288
ancestry	traversal,	294–298
complex	searching,	294–298
improving	query	performance,	288–291
materialized	path,	291–294
nested	lists,	288–291
nodes,	depth	vs.	distance,	296
overview,	286
traversing	a	hierarchy	with	CTEs,	194–195

Moving	aggregates,	CTEs,	172–177
MySQL
execution	plans,	207
getting	metadata,	217
support	for	CTEs,	249

MySQL,	date	and	time
arithmetic	operations,	308–309
data	types,	308
functions,	310–312

N
Naming	tables,	Access,	88
NATURAL	JOIN,	103
NCITS	(National	Committee	for	Information	Technology	Standards),	5
Nested	lists,	288–291
Nested	loops,	indexes,	57
Nesting,	CONCAT()	functions,	24
Nodes,	depth	vs.	distance,	296
Nonclustered	indexes,	55
Non-correlated	subqueries,	184–189
Non-sargable	queries,	SQL	code	example,	129–131
Normal	forms,	37–43
Normalization.	See	also	Denormalization.
3NF,	37–43
5NF,	37–43



6NF,	37–43
Boyce-Codd	normal	form,	38
columns,	adding/removing,	19–20
database	samples,	for	scheduling,	41
definition,	15
delete	anomalies,	16
foreign	key	constraints,	17–18
goal	of,	15
insert	anomalies,	15–16
lossless	decomposition,	42
normal	forms,	37–43
recreating	original	data,	17–18
redundant	storage,	15–19
repeating	groups,	eliminating,	19–21
rows,	adding/removing,	20
splitting	into	tables	by	subject,	17
UNION	queries,	20–21
update	anomalies,	16

NOT	IN	operator,	108
NOT	NULL	constraint,	68
Null	values
in	Access,	49–50
BOOLEAN	data	type,	71–72
in	DB2,	48–49
detecting,	47
eliminating	in	UNIQUE	indexes,	48–49
in	indexes,	47–52
in	MySQL,	51
in	Oracle,	51–52
ordering,	70–71
in	PostgreSQL,	52
in	primary	keys,	48
SQL	dialects,	70–71
in	SQL	Server,	50
testing	for,	111

Numbers,	generating	a	list	of,	194
Numeric	primary	keys,	14

O



ODI	(Oracle	Data	Integrator),	tools,	89
Online	resources.	See	also	Books	and	publications.
for	database	information,	5–6
database	rankings,	6
DB-Engines,	5–6
GitHub,	7
sample	databases,	7
SQL	dialects,	70

Oracle
execution	plans,	208–209,	212
getting	metadata,	217
in	the	history	of	SQL,	2

Oracle,	date	and	time
arithmetic	operations,	313
data	types,	313
functions,	313–314

Oracle	Data	Integrator	(ODI),	tools,	89
ORDER	BY	clause
generating	a	running	sum,	167–169
index	efficiency,	60
ordering	result	sets,	138

Ordering	result	sets,	138
Orphan	records,	preventing,	61
OUTER	JOIN
counting	items	in	a	group,	156–159
description,	103
erroneous	COUNT()	messages,	156–159

Output	format,	specifying,	210
OVER	clause,	generating	a	running	sum,	167–169

P
Pairing	rows	in	a	table	with	all	other	rows,	235–240.	See	also	Cartesian	Products.
Papers.	See	Books	and	publications.
Partial	indexes,	65–68
PARTITION	BY	predicate
generating	a	running	sum,	167–169
grouping	ranking	functions,	170

Partitioned	tables,	66
Partitioning	data	into	groups.	See	GROUP	BY	clause.



Performance
improving	in	modeling	hierarchical	data,	288–291
indexes,	54
queries.	See	Execution	plan.
statistics,	displaying,	210

Periodic	snapshot	fact	tables,	45
PERSISTED	keyword,	29
Pipelining,	indexes,	60
PIVOT,	280
Pivoting	data
definition,	278
with	tally	tables,	278–283

Plus	sign	(+)	operator,	concatenation	symbol,	24,	249
Population	standard	deviation,	calculating,	137
Population	variance,	calculating,	137
PostgreSQL,	date	and	time
arithmetic	operations,	315
data	types,	315
functions,	315–316

PostgreSQL,	execution	plans
buffer	usage,	displaying,	210
cost	estimates,	displaying,	210
description,	209–212
output	format,	specifying,	210
performance	statistics,	displaying,	210
timing	information,	displaying,	210

PostgreSQL,	getting	metadata,	217
Predicates,	111
Presentations.	See	Books	and	publications.
PRIMARY	KEY	constraint,	68
Primary	keys
cascading	updates,	13
choosing,	12–13
choosing	in	Access,	88
compound,	14
containing	multiple	columns,	14
generating	automatically,	13–14
null	values,	48
numeric,	14



preventing	duplicate	values,	14
text	based,	14
unique,	14
verifying,	11–15

Procedural	referential	integrity,	69–70
Project	operation,	102
Properties
one	per	column,	21–25
recombining,	23–24
recreating	original	data,	23–25
SQL	for	creating	a	table,	23

Publications.	See	Books	and	publications.

Q
QUEL	(Query	Language),	2–3
Queries,	description,	136
Query	analyzer	identifying	performance	issues.	See	Execution	plan.
Query	performance,	improving	in	modeling	hierarchical	data,	288–291

R
RANGE	keyword,	CTEs,	173–177
RANK()	function,	CTEs
ranking	rows,	169–172
ranking	rows	by	equal	quantiles,	232–235
SQL	code	example,	170

Ranking	rows.	See	also	RANK()	function.
importance	of	qualifications,	240–245
rows	by	equal	quantiles,	231–235.	See	also	Cartesian	Products.

Recreating	original	data,	17–18
Redundant	storage
eliminating,	15–19
example,	15–16

Referential	integrity	(RI).	See	RI	(referential	integrity).
Relational	algebra,	summary	of	operations,	101.	See	also	specific	operations.
Relational	database	model,	creation	of,	1–2
The	Relational	Model	for	Database	Management,	120
Relational	Software,	Inc.,	2
Relational	Technology,	Inc.,	3
Relations,	101.	See	also	Tables;	Views.
Repeating	groups



denormalization,	45
eliminating,	19–21

Restrict	operation.	See	Select	operation.
RI	(referential	integrity)
constraints	on	table	data,	68–70
DRI	(Declarative	Referential	Integrity),	31
enforced,	13
enforcing	with	foreign	keys,	30–33
FOREIGN	KEY	constraints	(listing),	32
procedural,	69–70

RI	(referential	integrity),	creating
Customer’s	table	(listing),	31
Orders	table	(listing),	32

ROLLUP	clause,	138–140
ROUND()	function,	233–235
ROW_NUMBER()	function,	CTEs,	169–172
Rows
adding/removing,	20
combining,	105–106
combining	between	two	tables,	227–230.	See	also	Cartesian	Products.
eliminating	duplicate,	99
filtering,	102
generating	with	tally	tables,	257–261
ranking	by	equal	quantiles,	231–235.	See	also	Cartesian	Products.
selecting	a	subset,	102

Rows,	aggregation
adjacent,	CTEs,	166–169
contiguous	ranking,	CTEs,	169–172
counting,	137
gaps	in	rankings,	CTEs,	171–172
numbering,	CTEs,	169–172
physical	grouping.	See	RANGE	keyword.
physical	offsets.	See	ROWS	keyword.
ranking,	CTEs,	169–172

ROWS	keyword,	CTEs,	175–177
Rules	for	table	data.	See	Constraints	on	table	data.
Running	sums,	CTEs,	166–169

S



Samples
databases,	online	resources	for,	7
SQL	code.	See	Examples	of	SQL	code.
standard	deviation,	calculating,	137
variance,	calculating,	137

Samples	variance,	calculating,	137
Sargable	queries,	SQL	code	example,	129–131
Scalar	subqueries,	SQL	code	example,	183–184
Search	conditions,	111
Searched	CASE	statements,	111
Searching,	modeling	hierarchical	data,	294–298
SELECT	operation,	102
SELECT	statement	syntax,	SQL	code	example,	136
Sensitive	data,	protecting	with	views,	82
SEQUEL	(Structured	English	Query	Language),	2
SEQUEL/2,	2
SEQUEL-XRM,	2
Sequencing	data	with	tally	tables,	252–257
SHOW	command,	MySQL,	217
Showplan	Capturer	tool,	Access,	205
Simple	CASE	statements,	111
6NF	(sixth	normal	form),	37–43
Sort-merge	joins,	57
Spolsky,	Joel,	201
SQL	(structured	query	language)
code	examples.	See	Examples	of	SQL	code.
history	of.	See	History	of	SQL.
pronouncing,	2

SQL	dialects
across	DBMSs,	71
BOOLEAN	data	type,	71–72
limiting	result	sets,	71–72
ordering	nulls,	70–71
ordering	result	sets,	70–71
overview,	70

SQL	Queries	for	Mere	Mortals,	Third	Edition,	113
SQL	Server,	date	and	time
arithmetic	operations,	306
data	types,	305



functions,	306–308
SQL	Server,	execution	plans,	205–206,	212
creating	a	plan,	205–206
enabling/disabling	execution	profiling,	206
tabular	output,	206

SQL	Server	Integration	Services	(SSIS),	tools,	89
SQL	standards.	See	also	specific	standards.
ANSI	X3.135-1986	Database	Language	SQL,	3–4
current,	5
for	date	and	time	functions,	299
ISO	9075:	1989	Database	Language	SQL	with	Integrity	Enhancement,	4
ISO	9075:1987	Database	Language	SQL,	4
ISO/IEC	9075:1992	Database	Language	SQL,	4–5
SQL/86,	3–4
SQL/89,	4
SQL/92,	5
SQL/Foundation	(document	ISO/IEC	9075-2:2011),	5
X3.135-1989	Database	Language	SQL	with	Integrity	Enhancement,	4

SQL	standards	compliance,	SQL	code	example,	143–144
SQL/86	standard,	3–4
SQL/89	standard,	4
SQL/92	standard
description,	5
GROUP	BY	clause	size,	142–145

SQL/DS	(SQL/Data	System),	3
SQL/Foundation	(document	ISO/IEC	9075-2:2011)	standard,	5
SSIS	(SQL	Server	Integration	Services),	tools,	89
Standards.	See	SQL	standards.
STDDEV_POP()	function,	137
STDDEV_SAMP()	function,	137
Stonebraker,	Michael,	2
Storage
calculated	data.	See	Calculated	data,	storing.
redundant.	See	Redundant	storage.

Stored	procedures.	See	Triggers.
Structured	English	Query	Language	(SEQUEL),	2
Structured	query	language	(SQL).	See	SQL	(structured	query	language).
Subqueries
correlated	vs.	non-correlated,	184–189



with	CTEs,	190–196
definition,	179
JOIN	instead	of,	197–199
recursive	CTEs,	194–196

Subqueries,	scalar
definition,	179
description,	183–184

Subqueries,	table
definition,	179
description,	180–182

Subqueries,	table	with	only	one	column
definition,	179
description,	182–183

Subtracting	sets,	106–108
SUM()	function,	137
Summarizing	data
with	tally	tables,	261–268
with	views,	83

Summary	tables,	90–93.	See	also	Views.
Summing	values,	137

T
Table	relationships
creating	(listing),	36
design	guidelines,	33–37
EAV	(entity-attribute-value)	model,	36

Table	scans,	indexes,	52–56
Table	size,	effects	on	indexes,	55–56
Table	subqueries,	SQL	code	example,	180–181
Table	with	only	one	column	subqueries,	SQL	code	example,	182–183
tablefunc	extension,	280
Tables.	See	also	Constraints	on	table	data;	Tally	tables.
adding	indicative	fields	to,	45
linking,	102–103
naming	in	Access,	88
splitting	by	subject,	17
summary.	See	Summary	tables.

Table-valued	functions,	251
Tally	tables.	See	also	Tables.



appointment	calendar,	creating,	275–277
converting	values	based	on	values	in	a	tally	table,	261–268
date	calculations,	268–274
date	tables,	268–274
generating	blank	rows,	248–252
generating	multiple	rows,	257–261
pivoting	data,	278–283
printing	mailing	labels,	248–252
sequencing	data,	252–257
summarizing	data,	261–268

Text-based	primary	keys,	14
3NF	(third	normal	form),	37–43
Time,	handling	in	denormalization,	45
Timing	information,	displaying,	210
TIMING	option,	210
Tools
Access,	86–89
for	creating	Access	execution	plans,	205
InfoSphere	DataStage,	DB2,	89
ODI	(Oracle	Data	Integrator),	89
Showplan	Capturer	tool,	Access,	205
SSIS	(SQL	Server	Integration	Services),	89

Transaction	fact	tables,	45
TRANSFORM,	280
Traversing	a	hierarchy	with	CTEs,	SQL	code	example,	194–195
Triggers
attaching	to	calculated	columns,	26
overview,	61–65
portability,	65

Trowitzsch,	Sasha,	205
Tuning	queries,	52–56
Tuples,	101.	See	also	Rows.

U
Union	operation,	106
UNION	queries
eliminating	duplicate	rows,	99
normalizing	data,	20–21
rules	for	using,	95



unpivoting	non-normalized	data,	94–99
UNION	queries,	SQL	code	examples
normalizing	data,	95–96
specifying	sort	order,	98

UNIQUE	constraint,	68,	73
Unique	primary	keys,	14
Unique	record	identity,	68,	73
Unknown	data.	See	Null	values.
Update	anomalies,	16

V
Value	expressions,	111
VAR_POP()	function,	137
VAR_SAMP()	function,	137
VERBOSE	option,	210
Verifying,	primary	keys,	11–15
Vertical	bars	(||)	operator,	concatenation	symbol,	24,	248–249
Viescas,	John,	113
Views.	See	also	Summary	tables.
backward	compatibility,	82
customizing	data,	82–83
definition,	79
exporting/importing	data,	83
focusing	on	specific	data,	82
parameterized,	with	table-valued	functions,	251
protecting	sensitive	data,	82
simplifying	data	manipulation,	82
simplifying	or	clarifying	column	names,	82
SQL	code	example,	121–122
summarizing	data,	83
uses	for,	79–85
on	views,	83–85

von	Halle,	Barbara,	19

W
WHERE	clause
filtering	aggregate	data,	145
indexes	and	efficiency,	56

Window	frames,	setting	bounds	for,	CTEs,	172–177



Window	functions,	CTEs
with	aggregate	functions,	166–169
moving	aggregates,	172–177
sequencing	data,	252–257

Wong,	Eugene,	2

X
X3.135-1989	Database	Language	SQL	with	Integrity	Enhancement	standard,	4
X3.135-1992	Database	Language	SQL	standard,	4–5
X3H2	database	technical	committee,	3,	5

Z
Zero	values,	SQL	code	example,	159–163





Code	Snippets
























































































































































































































































































































































































































































	About This E-Book
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Foreword
	Acknowledgments
	About the Authors
	About the Technical Editors
	Introduction
	A Brief History of SQL
	Database Systems We Considered
	Sample Databases
	Where to Find the Samples on GitHub
	Summary of the Chapters

	1. Data Model Design
	Item 1: Verify That All Tables Have a Primary Key
	Things to Remember

	Item 2: Eliminate Redundant Storage of Data Items
	Things to Remember
	References

	Item 3: Get Rid of Repeating Groups
	Things to Remember

	Item 4: Store Only One Property per Column
	Things to Remember

	Item 5: Understand Why Storing Calculated Data Is Usually a Bad Idea
	Things to Remember

	Item 6: Define Foreign Keys to Protect Referential Integrity
	Things to Remember

	Item 7: Be Sure Your Table Relationships Make Sense
	Things to Remember

	Item 8: When 3NF Is Not Enough, Normalize More
	Things to Remember

	Item 9: Use Denormalization for Information Warehouses
	Things to Remember


	2. Programmability and Index Design
	Item 10: Factor in Nulls When Creating Indexes
	IBM DB2
	Microsoft Access
	Microsoft SQL Server
	MySQL
	Oracle
	PostgreSQL
	Things to Remember

	Item 11: Carefully Consider Creation of Indexes to Minimize Index and Data Scanning
	Things to Remember

	Item 12: Use Indexes for More than Just Filtering
	Things to Remember

	Item 13: Don’t Go Overboard with Triggers
	Things to Remember

	Item 14: Consider Using a Filtered Index to Include or Exclude a Subset of Data
	Things to Remember

	Item 15: Use Declarative Constraints Instead of Programming Checks
	Things to Remember

	Item 16: Know Which SQL Dialect Your Product Uses and Write Accordingly
	Ordering Result Sets
	Limiting Result Sets
	The BOOLEAN Data Type
	SQL Functions
	The UNIQUE Constraint
	Things to Remember

	Item 17: Know When to Use Calculated Results in Indexes
	Things to Remember


	3. When You Can’t Change the Design
	Item 18: Use Views to Simplify What Cannot Be Changed
	Things to Remember

	Item 19: Use ETL to Turn Nonrelational Data into Information
	Things to Remember

	Item 20: Create Summary Tables and Maintain Them
	Things to Remember

	Item 21: Use UNION Statements to “Unpivot” Non-normalized Data
	Things to Remember


	4. Filtering and Finding Data
	Item 22: Understand Relational Algebra and How It Is Implemented in SQL
	Select (Restrict)
	Project
	Join
	Intersect
	Cartesian Product
	Union
	Divide
	Difference
	Things to Remember

	Item 23: Find Non-matches or Missing Records
	Things to Remember

	Item 24: Know When to Use CASE to Solve a Problem
	Things to Remember

	Item 25: Know Techniques to Solve Multiple-Criteria Problems
	Things to Remember

	Item 26: Divide Your Data If You Need a Perfect Match
	Things to Remember

	Item 27: Know How to Correctly Filter a Range of Dates on a Column Containing Both Date and Time
	Things to Remember

	Item 28: Write Sargable Queries to Ensure That the Engine Will Use Indexes
	Things to Remember

	Item 29: Correctly Filter the “Right” Side of a “Left” Join
	Things to Remember


	5. Aggregation
	Item 30: Understand How GROUP BY Works
	Things to Remember

	Item 31: Keep the GROUP BY Clause Small
	Things to Remember

	Item 32: Leverage GROUP BY/HAVING to Solve Complex Problems
	Things to Remember

	Item 33: Find Maximum or Minimum Values Without Using GROUP BY
	Things to Remember

	Item 34: Avoid Getting an Erroneous COUNT() When Using OUTER JOIN
	Things to Remember

	Item 35: Include Zero-Value Rows When Testing for HAVING COUNT(x) < Some Number
	Things to Remember

	Item 36: Use DISTINCT to Get Distinct Counts
	Things to Remember

	Item 37: Know How to Use Window Functions
	Things to Remember

	Item 38: Create Row Numbers and Rank a Row over Other Rows
	Things to Remember

	Item 39: Create a Moving Aggregate
	Things to Remember


	6. Subqueries
	Item 40: Know Where You Can Use Subqueries
	Table Subquery
	Table Subquery with One Column
	Scalar Subquery
	Things to Remember

	Item 41: Know the Difference between Correlated and Non-correlated Subqueries
	Non-correlated Subqueries
	Correlated Subqueries
	Things to Remember

	Item 42: If Possible, Use Common Table Expressions Instead of Subqueries
	Using a CTE to Simplify a Query
	Using a Recursive CTE
	Things to Remember

	Item 43: Create More Efficient Queries Using Joins Rather than Subqueries
	Things to Remember


	7. Getting and Analyzing Metadata
	Item 44: Learn to Use Your System’s Query Analyzer
	IBM DB2
	Microsoft Access
	Microsoft SQL Server
	MySQL
	Oracle
	PostgreSQL
	Things to Remember

	Item 45: Learn to Get Metadata about Your Database
	Things to Remember

	Item 46: Understand How the Execution Plan Works
	Things to Remember


	8. Cartesian Products
	Item 47: Produce Combinations of Rows between Two Tables and Flag Rows in the Second That Indirectly Relate to the First
	Things to Remember

	Item 48: Understand How to Rank Rows by Equal Quantiles
	Things to Remember

	Item 49: Know How to Pair Rows in a Table with All Other Rows
	Things to Remember

	Item 50: Understand How to List Categories and the Count of First, Second, or Third Preferences
	Things to Remember


	9. Tally Tables
	Item 51: Use a Tally Table to Generate Null Rows Based on a Parameter
	Things to Remember

	Item 52: Use a Tally Table and Window Functions for Sequencing
	Things to Remember

	Item 53: Generate Multiple Rows Based on Range Values in a Tally Table
	Things to Remember

	Item 54: Convert a Value in One Table Based on a Range of Values in a Tally Table
	Things to Remember

	Item 55: Use a Date Table to Simplify Date Calculation
	Things to Remember

	Item 56: Create an Appointment Calendar Table with All Dates Enumerated in a Range
	Things to Remember

	Item 57: Pivot Data Using a Tally Table
	Things to Remember


	10. Modeling Hierarchical Data
	Item 58: Use an Adjacency List Model as the Starting Point
	Things to Remember

	Item 59: Use Nested Sets for Fast Querying Performance with Infrequent Updates
	Things to Remember

	Item 60: Use a Materialized Path for Simple Setup and Limited Searching
	Things to Remember

	Item 61: Use Ancestry Traversal Closure for Complex Searching
	Things to Remember


	Appendix. Date and Time Types, Operations, and Functions
	IBM DB2
	Data Types Supported
	Arithmetic Operations Supported
	Functions

	Microsoft Access
	Data Types Supported
	Arithmetic Operations Supported
	Functions

	Microsoft SQL Server
	Data Types Supported
	Arithmetic Operations Supported
	Functions

	MySQL
	Data Types Supported
	Arithmetic Operations Supported
	Functions

	Oracle
	Data Types Supported
	Arithmetic Operations Supported
	Functions

	PostgreSQL
	Data Types Supported
	Arithmetic Operations Supported
	Functions


	Index
	Code Snippets

